Skip to main content
Log in

Formation Mechanism of Alkyl Nitrites, Valuable Intermediates in C1-Upgrading Chemistry and Oxidation Processes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this contribution we use computational tools to investigate the reaction of alcohol substrates with reactive nitrogen oxide species such as N2O3 and N2O4, leading to the formation of alkyl nitrites. These nitrites are interesting intermediates which can be processed to various valuable chemicals such as ketones/aldehydes and dimethyl oxalate while regenerating NO x . As such, NO x is used as an oxidation mediator, converting alcohol substrates to more reactive nitrites which can be selectively converted to more desired compounds, closing a catalytic cycle in NO x species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Scheme 4
Scheme 5
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rebsdat S, Mayer D (2011) Ethylene Oxide, Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, Weinheim

    Google Scholar 

  2. Umemura S, Miyazaki H (1984) Kagaku Kogyo 35:34

    CAS  Google Scholar 

  3. Uchiumi SI, Ataka K, Matsuzaki T (1999) J Organomet Chem 576:279

    Article  CAS  Google Scholar 

  4. Uchiumi SI, Ataka K (2002) Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley, New York, pp 2691–2704

    Google Scholar 

  5. Fang D, Ying W (1993) Huaxue Shijie 34:583

    CAS  Google Scholar 

  6. He L, Xiao H, Li Y (2006) Gongye Cuihua 14:11

    Google Scholar 

  7. Wu L (2008) Shanghai Huagong 33:18

    CAS  Google Scholar 

  8. Ma Z, Meng X, Wang H, Zhou W, Jiang H (2009) Shiyou Huagong 38:456

    CAS  Google Scholar 

  9. Zhou J, Liu X, Liu D (2009) Huagong Jinzhan 28:47

    Google Scholar 

  10. Wang J, Yang W, Lu J (2009) Huagong Jinzhan 28:1216

    CAS  Google Scholar 

  11. Boswell C (2012) ICIS Chem Bus 281(5):32–33

    Google Scholar 

  12. Hantzsch A (1901) Chem Ber 36:2097

    Google Scholar 

  13. Langenbeck W, Richter M (1956) Chem Ber 89:202

    Article  CAS  Google Scholar 

  14. Niki H, Maker PD, Savage CM, Breitenbach LP (1982) Intern J Kinetics 14:1199

    Article  CAS  Google Scholar 

  15. Koda S, Yoshikawa K, Okada J, Akita K (1985) Environ Sci Technol 19:262

    Article  CAS  Google Scholar 

  16. Liu G, Ji Y, Li W (2010) Chem Eng J 157:483

    Article  CAS  Google Scholar 

  17. Wang H, Li G (2010) Chem Eng J 163:422

    Article  CAS  Google Scholar 

  18. Ji Y, Zhang B, Liu G, Li W, Xiao W (2010) Tianranqi Huagong 35:12

    CAS  Google Scholar 

  19. (a) US 4353843 and references therein; (b) US2831882; (c) DE1156775; (d) US1691302; (e) US4467109; (f) US 4229589; (g) EP1346976; (h) CN102008922; (i) CN201711149

  20. Aellig C, Neuenschwander U, Hermans I (2012) ChemCatChem 4:525

    Article  CAS  Google Scholar 

  21. Aellig C, Girard C, Hermans I (2011) Angew Chem Int Ed 50:12355

    Article  CAS  Google Scholar 

  22. Aellig C, Scholz D, Hermans I (2012) ChemSusChem 9:1732

    Google Scholar 

  23. Liu Y-D, Zhong RG (2010) Chin J Str Chem 29(3):421

    CAS  Google Scholar 

  24. Sun Z, Liu YD, Lv CL, Zhong RG (2009) J Mol Structure 908:107

    Article  CAS  Google Scholar 

  25. Liu W-G, Goddard WA (2012) J Am Chem Soc 134:12970

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers EE, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma R, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford

    Google Scholar 

  27. Becke AD (1992) J. Chem. Phys. 96:2155

    Article  CAS  Google Scholar 

  28. Becke AD (1992) J Chem Phys. 97:9173

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys. 98:5648

    Article  CAS  Google Scholar 

  30. Chai JD, Head-Gordon M (2008) J Chem Phys. 128:084106

    Article  Google Scholar 

  31. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys. 87:5968

    Article  CAS  Google Scholar 

  32. Ochterski JW, Petersson GA, Montgomery JA Jr (1996) J Chem Phys. 104:2598

    Article  CAS  Google Scholar 

  33. Bartlett RJ, Purvis GD III (1978) Int J Quantum Chem 14:561

    Article  CAS  Google Scholar 

  34. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545

    Article  CAS  Google Scholar 

  35. Varetti EL, Pimentel GC (1971) J Chem Phys. 55:3813

    Article  CAS  Google Scholar 

  36. Nour EM, Chen LH, Laane J (1983) J Phys Chem 87:1113

    Article  CAS  Google Scholar 

  37. Holland RF, Maier WB, Ii J (1983) Chem Phys 78:2928

    CAS  Google Scholar 

  38. Hermans I, Nguyen TL, Jacobs PA, Peeters J (2005) ChemPhysChem 6:637

    Article  CAS  Google Scholar 

  39. Albright TA, Burdett JK, Whangbo M-H (1985) Orbital Interactions in Chemistry. Wiley, Hoboken

    Google Scholar 

  40. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

IH acknowledges financial support from the ETH Zurich and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ive Hermans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermans, I., Teles, J.H., Dehn, R. et al. Formation Mechanism of Alkyl Nitrites, Valuable Intermediates in C1-Upgrading Chemistry and Oxidation Processes. Top Catal 57, 1256–1264 (2014). https://doi.org/10.1007/s11244-014-0291-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0291-7

Keywords

Navigation