Skip to main content
Log in

From Renewable to Fine Chemicals Through Selective Oxidation: The Case of Glycerol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic selective oxidation of glycerol is presented in terms of catalytic systems and experimental conditions. Unsupported gold nanoparticles (AuNPs), AuNPs on carbon and on TiO2 were employed and compared in terms of reaction selectivity and activity. The role of the base and the formed hydrogen peroxide has been considered. Gold based catalysts showed selectivity that is strongly dependent of the reaction conditions. In particular C–C scission products increases by increasing the reaction temperature but correlated only partially with the rate of degradation of the H2O2 formed under the operative conditions. Moreover, under neutral/acidic conditions glycerol can be oxidised also by increasing the temperature slightly, but it leads to a detrimental effect on selectivity and catalyst life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gallezot P (2007) Catal Today 121:76

    Article  CAS  Google Scholar 

  2. Coombs J, Hall K (1998) Renew Energ 15:54

    Article  CAS  Google Scholar 

  3. Lichtenhalers FW, Mondel S (1997) Pure Appl Chem 69:1853

    Article  Google Scholar 

  4. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  5. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chem Soc Rev 37:527

    Article  CAS  Google Scholar 

  6. Werpy T, Petersen G (eds) Top value added chemicals from biomass, Volume I, Produced by Staff at the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL). Available at http://www.osti.gov/bridge

  7. Dimitratos N, Villa A, Wang D, Prati L, Porta F, Su D (2006) J Catal 244:113

    Article  CAS  Google Scholar 

  8. Satterfeld CN, Bonnel AH (1955) Anal Chem 27:1174

    Article  Google Scholar 

  9. Jeffery GH, Basset J, Mendham J, Denney RC (eds) (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn. Longman Scientific & Technical, London

    Google Scholar 

  10. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Appl Catal A 96:217

    Article  CAS  Google Scholar 

  11. Kimura H (1993) Appl Catal A 105:147

    Article  CAS  Google Scholar 

  12. Garcia R, Besson M, Gallezot P (1995) Appl Catal A 127:165

    Article  CAS  Google Scholar 

  13. Besson M, Gallezot P (2000) Catal Today 57:127

    Article  CAS  Google Scholar 

  14. Mallat T, Baiker A (1994) Catal Today 19:247 and reference cited therein

  15. Prati L, Rossi M (1998) J Catal 176:552

    Article  CAS  Google Scholar 

  16. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Commun 696

  17. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ, Kielly CJ (2003) Phys Chem Chem Phys 5:1329

    Article  CAS  Google Scholar 

  18. Ketchie WC, Murayama M, Davis RJ (2007) Top Catal 44:307

    Article  CAS  Google Scholar 

  19. Demirel-Guelen S, Lucas M, Waerna J, Salmi T, Murzin D, Claus P (2007) Top Catal 44:299

    Article  CAS  Google Scholar 

  20. Mallat T, Baiker A (2004) Chem Rev 104:3037

    Article  CAS  Google Scholar 

  21. Bianchi L, Canton P, Dimitratos N, Porta F, Prati L (2005) Catal Today 102:203

    Article  CAS  Google Scholar 

  22. Wang D, Villa A, Porta F, Su D, Prati L (2006) Chem Commun 1956

  23. Demirel-Guelen S, Lehnert K, Lucas M, Claus P (2007) Appl Catal B 70:637

    Article  CAS  Google Scholar 

  24. Prati L, Porta F (2004) J Catal 224:397

    Article  CAS  Google Scholar 

  25. Demirel-Guelen S, Lucas M, Claus P (2005) Catal Today 102–103:166

    Article  CAS  Google Scholar 

  26. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ, Kiely CJ (2003) J Phys Chem 5:1329

    Article  CAS  Google Scholar 

  27. Ketchie WC, Fang Y-L, Wong MS, Murayama M, Davis RJ (2007) J Catal 250:94

    Article  CAS  Google Scholar 

  28. Veith GM, Lupini AR, Pennycook SJ, Villa A, Prati L, Dudney NJ (2007) Catal Today 122:248

    Article  CAS  Google Scholar 

  29. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131

    Article  CAS  Google Scholar 

  30. Comotti M, Della Pina C, Falletta E, Rossi M (2006) Adv Synth Catal 348:313

    Article  CAS  Google Scholar 

  31. Prati L, Villa A, Porta F, Wang D, Su D (2007) Catal Today 122:386

    Article  CAS  Google Scholar 

  32. Prati L, Villa A, Campione C, Spontoni P (2007) Top Catal 44:319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Prati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prati, L., Spontoni, P. & Gaiassi, A. From Renewable to Fine Chemicals Through Selective Oxidation: The Case of Glycerol. Top Catal 52, 288–296 (2009). https://doi.org/10.1007/s11244-008-9165-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9165-1

Keywords

Navigation