Skip to main content
Log in

The Nanoscience Revolution: Merging of Colloid Science, Catalysis and Nanoelectronics

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The incorporation of nanosciences into catalysis studies has become the most powerful approach to understanding reaction mechanisms of industrial catalysts and designing new-generation catalysts with high selectivity. Nanoparticle catalysts were synthesized via controlled colloid chemistry routes. Nanostructured catalysts such as nanodots and nanowires were fabricated with nanolithography techniques. Catalytic selectivity is dominated by several complex factors including the interface between active catalyst phase and oxide support, particle size and surface structure, and selective blocking of surface sites, etc. The advantage of incorporating nanosciences into the studies of catalytic selectivity is the capability of separating these complex factors and studying them one by one in different catalyst systems. The role of oxide–metal interfaces in catalytic reactions was investigated by detection of continuous hot electron flow in catalytic nanodiodes fabricated with shadow mask deposition technique. We found that the generation mechanism of hot electrons detected in Pt/TiO2 nanodiode is closely correlated with the turnover rate under CO oxidation. The correlation suggests the possibility of promoting catalytic selectivity by precisely controlling hot electron flow at the oxide–metal interface. Catalytic activity of 1.7–7.2 nm monodispersed Pt nanoparticles exhibits particle size dependence, demonstrating the enhancement of catalytic selectivity via controlling the size of catalyst. Pt–Au alloys with different Au coverage grown on Pt(111) single crystal surface have different catalytic selectivity for four conversion channels of n-hexane, showing that selective blocking of catalytic sites is an approach to tuning catalytic selectivity. In addition, presence and absence of excess hydrogen lead to different catalytic selectivity for isomerization and dehydrocyclization of n-hexane on Pt(111) single crystal surface, suggesting that modification of reactive intermediates by the presence of coadsorbed hydrogen is one approach to shaping catalytic selectivity. Several challenges such as imaging the mobility of adsorbed molecules during catalytic reactions by high pressure STM and removing polymeric capping agents from metal nanoparticles remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley & Sons, New York

    Google Scholar 

  2. Yan XM, Kwon S, Contreras AM, Bokor J, Somorjai GA (2005) Nano Lett 5:745

    Article  CAS  Google Scholar 

  3. Yan XM, Contreras AM, Koebel MM, Liddle JA, Somorjai GA (2005) Nano Lett 5:1129

    Article  CAS  Google Scholar 

  4. Kwon S, Yan XM, Contreras AM, Liddle JA, Somorjai GA, Bokor J (2005) Nano Lett 5:2557

    Article  CAS  Google Scholar 

  5. Jacobs PW, Ribeiro FH, Somorjai GA, Wind SJ (1996) Catal Lett 37:131

    Article  CAS  Google Scholar 

  6. Jacobs PW, Wind SJ, Ribeiro FH, Somorjai GA (1997) Surf Sci 372:L249

    Article  CAS  Google Scholar 

  7. Choi YK, Zhu J, Grunes J, Bokor J, Somorjai GA (2003) J Phys Chem B 107:3340

    Article  CAS  Google Scholar 

  8. Zhu J, Somorjai GA (2001) Nano Lett 1:8

    Article  CAS  Google Scholar 

  9. Konya Z, Puntes VF, Kiricsi I, Zhu J, Alivisatos AP, Somorjai GA (2002) Nano Lett 2:907

    Article  CAS  Google Scholar 

  10. Hoefelmeyer JD, Niesz K, Somorjai GA, Tilley TD (2005) Nano Lett 5:435

    Article  CAS  Google Scholar 

  11. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang PD, Somorjai GA (2006) J Am Chem Soc 128:3027

    Article  CAS  Google Scholar 

  12. Rioux RD, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109:2192

    Article  CAS  Google Scholar 

  13. Grunes J (2004) Ph.D. Thesis, University of California, Berkeley

  14. Tsirlin T, Zhu J, Grunes J, Somorjai GA (2002) Top Catal 19:165

    Article  CAS  Google Scholar 

  15. Eppler AS, Zhu J, Anderson EA, Somorjai GA (2000) Top Catal 13:33

    Article  CAS  Google Scholar 

  16. Choi YK, Zhu J, Grunes J, Bokor J, Somorjai GA (2003) J Phys Chem B 107:3340

    Article  CAS  Google Scholar 

  17. Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) J Phys Chem B 103:3818

    Article  CAS  Google Scholar 

  18. Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Chem Mater 12:1622

    Article  CAS  Google Scholar 

  19. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924

    Article  CAS  Google Scholar 

  20. Somorjai GA, Rupprechter G (1999) J Phys Chem 103:1623

    CAS  Google Scholar 

  21. Levin ME, Salmeron M, Bell AT, Somorjai GA (1987) J Catal 106:401

    Article  CAS  Google Scholar 

  22. Tauster SJ (1987) Acc Chem Res 20:389

    Article  CAS  Google Scholar 

  23. Bartholomew CH, Pannell RB, Butler JL (1980) J Catal 65:335

    Article  CAS  Google Scholar 

  24. Boffa A, Lin C, Bell AT, Somorjai GA (1994) J Catal 149:149

    Article  CAS  Google Scholar 

  25. Somorjai GA (2005) Catal Lett 101:1

    Article  CAS  Google Scholar 

  26. Ji X, Zuppero A, Gidwani JM, Somorjai GA (2005) J Am Chem Soc 127:5792

    Article  CAS  Google Scholar 

  27. Park JY, Somorjai GA (2006) J Vac Sci Technol B 24:1967

    Article  CAS  Google Scholar 

  28. Park JY, Somorjai GA (2006) Chem Phys Chem 7:1409

    CAS  Google Scholar 

  29. Schwab GM, Darleth H (1966) J Phys Chem Beue Folge 50:191

    CAS  Google Scholar 

  30. Schwab GM, Darleth H (1967) J Phys Chem Neue Folge 53:1

    CAS  Google Scholar 

  31. Solymosi F (1967) Catal Rev 1:233

    Article  CAS  Google Scholar 

  32. Langenbeck W, Dreyer H, Fuhrman H (1962) J Anorg Chem 314:179

    Article  CAS  Google Scholar 

  33. Schwab GM, Putzar R (1962) J Phys Chem (Frankfurt) 31:179

    Google Scholar 

  34. Contreras AM, Grunes J, Yan XM, Liddle A, Somorjai GA (2005) Catal Lett 100:115

    Article  CAS  Google Scholar 

  35. Grunes J, Zhu J, Yang M, Somorjai GA (2003) Catal Lett 86:157

    Article  CAS  Google Scholar 

  36. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  37. Yang M, Somorjai GA (2004) J Am Chem Soc 126:7698

    Article  CAS  Google Scholar 

  38. Yeates RC, Somorjai GA (1987) J Catal 103:208

    Article  CAS  Google Scholar 

  39. Sachtler JWA, Somorjai GA (1983) J Catal 81:77

    Article  CAS  Google Scholar 

  40. Zaera F, Godbey D, Somorjai GA (1986) J Catal 101:73

    Article  CAS  Google Scholar 

  41. Davis SM, Zaera F, Somorjai GA (1984) J Catal 85:206

    Article  CAS  Google Scholar 

  42. Yang MC, Chou KC, Somorjai GA (2004) J Phys Chem B 108:14766

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Divisions and the Materials Sciences and Engineering Divisions, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somorjai, G.A., Tao, F. & Park, J.Y. The Nanoscience Revolution: Merging of Colloid Science, Catalysis and Nanoelectronics. Top Catal 47, 1–14 (2008). https://doi.org/10.1007/s11244-007-9028-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-9028-1

Keywords

Navigation