Original Paper

Topics in Catalysis

, Volume 47, Issue 3, pp 131-136

Application of Optical-fiber Photoreactor for CO2 Photocatalytic Reduction

  • Jeffrey C. S. WuAffiliated withDepartment of Chemical Engineering, National Taiwan University Email author 
  • , Tzu-Hua WuAffiliated withDepartment of Chemical Engineering, National Taiwan University
  • , Taichi ChuAffiliated withDepartment of Physics, National Taiwan University
  • , Hungji HuangAffiliated withDepartment of Physics, National Taiwan University
  • , Dingping TsaiAffiliated withDepartment of Physics, National Taiwan University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

An optical-fiber photoreactor, comprised of 216 catalyst-coated fibers, was designed and assembled to transmit and spread light uniformly inside the reactor. The power loss of light transmission inside an optical fiber was calculated using beam propagation method. The optimum length of optical fiber was estimated to be near 11 cm long in order to entirely spread out light energy over surface catalyst. Vapor-phase CO2 was photocatalytically reduced to methanol using the photoreactor under UV irradiation in a steady-state flow system. The solutions of metal-loaded titania were prepared by thermal hydrolysis method. Metal-loaded TiO2 film was coated on optical fibers by dip-coating method. TiO2, Cu/TiO2 and Ag/TiO2 films were uniformly on the fibers and their thicknesses ranged from 27 to 33 nm. The films consisted of very fine spherical particles with diameters of 10–20 nm. The XRD spectra indicated anatase phase for all films. Methanol yield increased with UV irradiative intensity. Maximum methanol rate was 4.12 μmole/g-cat h using 1.0 wt%-Ag/TiO2 catalyst at 1.13 bar of CO2, 0.03 bar of H2O pressures, and 5,000 s mean residence time under 10 W/cm2 UV irradiation.

Keywords

Photocatalysis Optical-fiber photoreactor CO2 conversion Renewable energy