Skip to main content
Log in

Di- and trinuclear Ru(II) complexes of 1,10-phenanthroline and 2,2′-bipyridine derivatives; synthesis, photophysical and electrochemical properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three heterotopic ligands L1, L2, and L3 based on 1,10-phenanthroline and 2,2′-bipyridine moieties have been synthesized and characterized. The Ru(II) complexes [{Ru(bpy)2}33-L1)](PF6)6, [{Ru(bpy)2}33-L2)](PF6)6, and [{Ru(bpy)2}22-L3)](PF6)4 (bpy = 2,2′-bipyridine) have been prepared by refluxing Ru(bpy)2Cl2·2H2O with each ligand in ethanol. All three complexes display MLCT absorptions at around 455 nm and emissions at around 618 nm. Electrochemical studies of the complexes reveal one Ru(II)-centered quasi-reversible oxidation at around 1.32 V and three ligand-centered reductions in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuhar K, Lisa A, Fredin LA, Persson P (2015) J Phys Chem B 119:7378–7392

    Article  CAS  Google Scholar 

  2. Farnum BH, Morseth ZA, Lapides AM, Rieth AJ, Hoertz PG, Brennaman MK, Papanikolas JM, Meyer TJ (2014) J Am Chem Soc 136:2208–2211

    Article  CAS  Google Scholar 

  3. Sun W, Sun S, Jiang N, Wang H, Peng X (2015) Organometallics 34:3385–3389

    Article  CAS  Google Scholar 

  4. Yamamoto Y, Tamaki Y, Yui T, Koike K, Ishitani O (2010) J Am Chem Soc 132:11743–11752

    Article  CAS  Google Scholar 

  5. Bichenkova EV, Yu X, Bhadra P, Heissigerova H, Pope SJA, Coe BJ, Faulkner S, Douglas KT (2005) Inorg Chem 44:4112–4114

    Article  CAS  Google Scholar 

  6. Wagner AT, Zhou R, Quinn KS, White TA, Wang J, Brewer KJ (2015) J Phys Chem A 119:6781–6790

    Article  CAS  Google Scholar 

  7. Karmakar S, Maity D, Mardanya S, Baitalik S (2014) Inorg Chem 53:12036–12049

    Article  CAS  Google Scholar 

  8. Mognon L, Benet-Buchholz J, Rahaman SMW, Bo C, Llobet A (2014) Inorg Chem 53:12407–12415

    Article  CAS  Google Scholar 

  9. Shi S, Liu J, Yao T, Geng X, Jiang L, Yang Q, Cheng L, Ji L (2008) Inorg Chem 47:2910–2912

    Article  CAS  Google Scholar 

  10. Elias B, Herman L, Moucheron C, Mesmaeker AK (2007) Inorg Chem 46:4979–4988

    Article  CAS  Google Scholar 

  11. Constable EC, Figgemeier E, Housecroft CE, Olsson J, Zimmermanna YC (2004) Dalton Trans 13:1918–1927

    Article  Google Scholar 

  12. Easun TL, Alsindi WZ, Deppermann N, Towrie M, Ronayne KL, Sun XZ, Ward WD, George MW (2009) Inorg Chem 48:8759–8770

    Article  CAS  Google Scholar 

  13. Guelfi M, Puntoriero F, Arrigo A, Serroni S, Cifelli M, Denti G (2013) Inorg Chim Acta 398:19–27

    Article  CAS  Google Scholar 

  14. Chao H, Qiu ZR, Cai LR, Zhang H, Li XY, Wong KS, Ji LN (2003) Inorg Chem 42:8823–8830

    Article  CAS  Google Scholar 

  15. Borgstrom M, Ott S, Lomoth R, Bergquist J, Hammarstrom L, Johansson O (2006) Inorg Chem 45:4820–4829

    Article  Google Scholar 

  16. Coronado E, Gavina P, Tatay S, Groarke R, Vos JG (2010) Inorg Chem 49:6897–6903

    Article  CAS  Google Scholar 

  17. Leveque J, Elias B, Moucheron C, Mesmaeker AKD (2005) Inorg Chem 44:393–400

    Article  CAS  Google Scholar 

  18. Ciana LD, Dressick WJ, Zelewsky AV (1990) J Heterocycl Chem 27:163–165

    Article  Google Scholar 

  19. Potts KT, Konwar D (1991) J Org Chem 56:4815–4816

    Article  CAS  Google Scholar 

  20. Chandler CJ, Deady LW, Reiss JA (1981) J Heterocycl Chem 18:599–601

    Article  CAS  Google Scholar 

  21. Stephanie D, Eric D, Cecile M, Andree KM, Pascal D (2003) Tetrahedron Lett 44:8379–8382

    Article  Google Scholar 

  22. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  23. Amouyal E, Homsi A, Chambron JC, Sauvage JP (1990) J Chem Soc. Dalton Trans 6:1841–1845

    Article  Google Scholar 

  24. Pilz TD, Rockstroh N, Rau S (2010) J Coord Chem 63:2727–2742

    Article  Google Scholar 

  25. Maji S, Sarkar B, Patra M, Das AK, Mobin SM, Kaim W, Lahiri GK (2008) Inorg Chem 47:3218–3227

    Article  CAS  Google Scholar 

  26. Tsierkezos NG, Ritter U, Philippopoulos AI, Schröder D (2010) J Coord Chem 63:3517–3530

    Article  CAS  Google Scholar 

  27. Fan SH, Zhang AG, Ju CC, Gao LH, Wang KZ (2010) Inorg Chem 49:3752–3763

    Article  CAS  Google Scholar 

  28. Fan SH, Wang KZ, Yang WC (2009) Eur J Inorg Chem 2009:508–518

    Article  Google Scholar 

  29. Bilakhiya AK, Tyagi B, Paul P (2002) Inorg Chem 41:3830–3842

    Article  CAS  Google Scholar 

  30. Jukes RTF, Biljana B, Peter B, Luisa DC, Frantisek H (2009) Inorg Chem 48:1711–1721

    Article  CAS  Google Scholar 

  31. Juris A, Prodi L, Harriman A, Ziessel R, Hissler M, El-ghayoury A, Wu F, Riesgo EC, Thummel RP (2000) Inorg Chem 39:3590–3598

    Article  CAS  Google Scholar 

  32. Jukes RTF, Vincenzo A, Frantisek H, Peter B, Luisa DC (2004) Inorg Chem 43:2779–2792

    Article  CAS  Google Scholar 

  33. Knoll JD, Arachchige SM, Wang G, Rangan K, Miao R, Higgins SLH, Okyere B, Zhao M, Croasdale P, Magruder K, Sinclair B, Wall C, Brewer KJ (2011) Inorg Chem 50:8850–8860

    Article  CAS  Google Scholar 

  34. Charbonnière LJ, Ziessel RF, Sams CA (2003) Inorg Chem 42:3466–3478

    Article  Google Scholar 

  35. Boyde S, Strouse GF, Jones WE, Meyer TJ (2010) J Am Chem Soc 112:7395–7396

    Article  Google Scholar 

  36. Wang Y, Suna A, Mahler W, Kasowski R (1987) J Chem Phys 87:7315–7322

    Article  CAS  Google Scholar 

  37. Lu YY, Ju CC, Guo D, Deng ZB, Wang KZ (2007) J Phys Chem C 111:5211–5217

    Article  Google Scholar 

  38. Constable EC, Housecroft CE, Schofield ER, Encinas S, Armaroli N, Barigelletti F, Flamigni L, Figgemeierc E, Vos JG (1999) Chem Commun 10:869–870

    Article  Google Scholar 

  39. Jukes RTF, Bozic B, Belser P, De Cola L, Hartl F (2009) Inorg Chem 48:1711–1721

    Article  CAS  Google Scholar 

  40. Baitalik S, Wang X, Schmehl RH (2004) J Am Chem Soc 126:16304–16305

    Article  CAS  Google Scholar 

  41. Sautter A, Kaletaş BK, Schmid DG, Dobrawa R, Zimine M, Jung G, van Stokkum IHM, De Cola L, Williams RM, Würthner F (2005) J Am Chem Soc 127:6719–6729

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (21261019) and Shanghai key laboratory of rare earth functional materials for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feixiang Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Yu, S., Ren, M. et al. Di- and trinuclear Ru(II) complexes of 1,10-phenanthroline and 2,2′-bipyridine derivatives; synthesis, photophysical and electrochemical properties. Transition Met Chem 41, 305–314 (2016). https://doi.org/10.1007/s11243-016-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0022-y

Keywords

Navigation