Skip to main content
Log in

Two dinuclear copper(II) coordination polymers constructed from m-hydroxybenzoic acid and N-donor ligands: synthesis, crystal structures, and magnetic properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two dinuclear Cu(II) complexes, [Cu2(4,4′-bpy)(m-bza)4]·3H2O·2DMF 1 and [Cu2(2,2′-bpy)2(m-bza)3](NO3) 2 (m-Hbza = m-hydroxybenzoic acid), were synthesized and characterized by X-ray diffraction methods, physicochemical and spectroscopic methods plus magnetic measurements. In complex 1, the paddle wheel binuclear Cu(II) cores are bridged by 4,4′-bpy ligands to form 1D chains which are further assembled into a 3D network through hydrogen bonding, with a topology of (44 × 610 × 8)(44 × 62). The dinuclear Cu(II) clusters in complex 2 are paired to generate hydrogen-bonded tetranuclear motifs, which are assembled via hydrogen bonds into 2D supramolecular layers and further assembled into a 3D supramolecular network through π⋯π stacking interactions with topology of (4 × 6 × 83 × 10)(4 × 62 × 83)(62 × 8). Variable-temperature magnetic susceptibility measurements show that both complexes exhibit antiferromagnetic coupling exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bhattacharya S, Gnanavel M, Bhattacharyya AJ, Natarajan S (2014) Cryst Growth Des 14:310–325

    Article  CAS  Google Scholar 

  2. Du P, Yang Y, Yang J, Liu BK, Ma JF (2013) Dalton Trans 42:1567–1580

    Article  CAS  Google Scholar 

  3. Zheng B, Luo JH, Wang F, Peng Y, Li GH, Huo QS, Liu YL (2013) Cryst Growth Des 13:1033–1044

    Article  CAS  Google Scholar 

  4. Mukherjee S, Mukherjee PS (2013) Dalton Trans 42:4019–4030

    Article  CAS  Google Scholar 

  5. Li LK, Xu H, Shi XJ, Hou HW, Fan YT (2010) Inorg Chim Acta 363:3939–3944

    Article  CAS  Google Scholar 

  6. Esteban J, Font-Bardia M, Costa JS, Teat SJ, Escuer A (2014) Inorg Chem 53:3194–3203

    Article  CAS  Google Scholar 

  7. Lamouchi M, Jeanneau E, Novitchi G, Luneau D, Brioude A, Desroches C (2014) Inorg Chem 53:63–72

    Article  CAS  Google Scholar 

  8. Li DS, Zhao J, Wu YP, Liu B, Bai L, Zou K, Du M (2013) Inorg Chem 52:8091–8098

    Article  CAS  Google Scholar 

  9. Tian CB, Lin ZJ, Du SW (2013) Cryst Growth Des 13:3746–3753

    Article  CAS  Google Scholar 

  10. Han YF, Zheng ZB, Wang CA, Sun JF, Li XY, Zhang JP, Xiao J, He GF, Li LQ (2015) J Mol Struct 1079:163–166

    Article  CAS  Google Scholar 

  11. Liu LL, Yu CX, Sun J, Meng PP, Ma FJ, Du JM, Ma LF (2014) Dalton Trans 43:2915–2924

    Article  CAS  Google Scholar 

  12. Li XJ, Guan TN, Guo XF, Li XX, Yu ZJ (2014) Eur J Inorg Chem 13:2307–2316

  13. Lu ZL, Lu J, Huang XM, Liu CM, Fan CH, Nie Y, Sun GX (2014) J Mol Struct 1064:76–80

    Article  CAS  Google Scholar 

  14. Baca SG, Malaestean IL, Keene TD, Adams H, Ward MD, Hauser J, Neels A, Decurtins S (2008) Inorg Chem 47:11108–11119

    Article  CAS  Google Scholar 

  15. Roubeau O, Clérac R (2008) Eur J Inorg Chem 28:4325–4342

  16. Bai YL, Tao J, Huang RB, Zheng LS (2008) Angew Chem Int Ed 47:5344–5347

    Article  CAS  Google Scholar 

  17. Das K, Mondal TK, Garribba E, Fondo M, Sinha C, Datta A (2014) Inorg Chim Acta 413:194–202

    Article  CAS  Google Scholar 

  18. Patra A, Giri GC, Sen TK, Carrella L, Mandal SK, Bera M (2014) Polyhedron 67:495–504

    Article  CAS  Google Scholar 

  19. Thompson LK Coord Chem Rev (2002) 233–243:193–206

  20. Hazra S, Karmakar A, Silva MFCG, Dlháň L, Boča R, Pombeiro AJL (2015) New J Chem 39:3424–3434

    Article  CAS  Google Scholar 

  21. Li X, Cheng DY, Lin JL, Li ZF, Zheng YQ (2008) Cryst Growth Des 8:2853–2861

    Article  CAS  Google Scholar 

  22. Hu HL, Suen MC, Yeh CW, Chen JD (2005) Polyhedron 24:1497–1502

    Article  CAS  Google Scholar 

  23. Wang JJ, Chang Z, Zhang AS, Hu TL, Bu XH (2010) Inorg Chim Acta 363:1377–1385

    Article  CAS  Google Scholar 

  24. Domasevitch KV, Gural’skiy IA, Solntsev PV, Rusanov EB, Krautscheid H, Howardd JAK, Chernega AN (2007) Dalton Trans 29:3140–3148

  25. Li QY, Quan Y, Wei W, Li J, Lu H, Ni R, Wang XJ (2015) Polyhedron 99:1–6

    Article  CAS  Google Scholar 

  26. Zhang SY, Zhang XP, Li HM, Niu Z, Shi W, Cheng P (2015) Inorg Chem 54:2310–2314

    Article  CAS  Google Scholar 

  27. Shi ZQ, Zheng HG (2015) Inorg Chem Commun 58:14–15

    Article  CAS  Google Scholar 

  28. Zheng YQ, Cheng DY, Liu BB, Huang WX (2011) Dalton Trans 40:277–286

    Article  CAS  Google Scholar 

  29. Lin CJ, Zheng YQ, Zhang DY, Xu W (2014) Russ J Coord Chem 40:932–942

    Article  CAS  Google Scholar 

  30. Lin CJ, Qi JL, Zheng YQ, Lin JL (2013) J Coord Chem 66:3877–3890

    Article  CAS  Google Scholar 

  31. Lin CJ, Xu JQ, Zheng YQ, Zhu HL, Xu W (2015) J Clust Sci 26:1253–1265

    Article  CAS  Google Scholar 

  32. Bain GA, Berry JF (2008) J Chem Edu 85:532–536

    Article  CAS  Google Scholar 

  33. Sheldrick GM (1997) SHELXS-97, Program for crystal structure solution. University of Göttingen, Göttingen

    Google Scholar 

  34. Sheldrick GM (1997) SHELXL-97, Program for crystal structure refinement. University of Göttingen, Göttingen

    Google Scholar 

  35. Moncol J, Vasková Z, Stachová P, Svorec J, Sillanpää R, Mazúr M, Valigura D (2010) J Chem Crystallogr 40:179–184

    Article  CAS  Google Scholar 

  36. Kuchtanin V, Moncol J, Mroziński J, Kalińska B, Padělková Z, Švorec J, Segl’a P, Melník M (2013) Polyhedron 50:546–555

    Article  CAS  Google Scholar 

  37. Ma DY, Lu K, Qin L, Guo HF, Peng XY, Liu JQ (2013) Inorg Chim Acta 396:84–91

    Article  CAS  Google Scholar 

  38. Delgado S, Molina-Ontoria A, Medina ME, Pastor CJ, Jiménez-Aparicio R, Priego JL (2007) Polyhedron 26:2817–2828

    Article  CAS  Google Scholar 

  39. Youngme S, Cheansirisomboon A, Danvirutai C, Pakawatchai C, Chaichit N, Engkagul C, van Albada GA, Costa JS, Reedijk J (2008) Polyhedron 27:1875–1882

    Article  CAS  Google Scholar 

  40. Wannarit N, Siriwong K, Chaichit N, Youngme S, Costa R, Moreira IPR, Illas F (2011) Inorg Chem 50:10648–10659

    Article  CAS  Google Scholar 

  41. Chailuecha C, Youngme S, Pakawatchai C, Chaichit N, van Albada GA, Reedijk J (2006) Inorg Chim Acta 359:4168–4178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was sponsored by K. C. Wong Magna Fund in Ningbo University. The authors thank xi2004, http://emuch.net/bbs/, for the refinement of crystal structure data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qing Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, WG., Lin, CJ., Zheng, YQ. et al. Two dinuclear copper(II) coordination polymers constructed from m-hydroxybenzoic acid and N-donor ligands: synthesis, crystal structures, and magnetic properties. Transition Met Chem 41, 87–96 (2016). https://doi.org/10.1007/s11243-015-9999-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9999-x

Keywords

Navigation