Skip to main content

Advertisement

Log in

The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(H 2 Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(dCH 3 Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF 3 Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, \( k_{{{\text{obs }}\left( {1/2} \right)}} \), for the stepwise substitution of the first and second aqua ligands obeyed the rate law: \( k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] \). The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF 3 Py) > Pt(H 2 Py) > Pt(dCH 3 Py), while that of the second was Pt(H 2 Py) ≈ Pt(dCF 3 Py) > Pt(dCH 3 Py). Lower pK a values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  CAS  Google Scholar 

  2. Wheate NJ, Collins JG (2003) Coord Chem Rev 241:133–145

    Article  CAS  Google Scholar 

  3. Fuertes MA, Alonso C, Perez JM (2002) Chem Rev 103:645–662

    Article  Google Scholar 

  4. Reedijk J (2008) Platin Metals Rev 52(1):1–11

    Article  Google Scholar 

  5. Frey U, Ranford JD, Sadler PJ (1993) Inorg Chem 32:1333–1340

    Article  CAS  Google Scholar 

  6. Barnham KJ, Djuran MI, Murdoch PDS, Ranford JD, Sadler PJ (1996) Inorg Chem 35:1065–1072

    Article  CAS  Google Scholar 

  7. Zhao J, Gou S, Liu F, Sun Y, Gao C (2013) Inorg Chem 52:8163–8170

    Article  CAS  Google Scholar 

  8. Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407

    Article  CAS  Google Scholar 

  9. Reedijk J (2003) PNAS 100(7):3611–3616

    Article  CAS  Google Scholar 

  10. Bloemink MJ, Heetebrij RG, Ireland J, Deacon GB, Reedijk J (1996) JBIC 1:278–283

    Article  CAS  Google Scholar 

  11. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  CAS  Google Scholar 

  12. Park GY, Wilson JJ, Song Y, Lippard JS (2012) PNAS 109(30):11987–11992

    Article  CAS  Google Scholar 

  13. Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2004) Chem Phys Lett 387:182–187

    Article  CAS  Google Scholar 

  14. Jakubec MA, Galanski M, Keppler BK (2003) Rev Physiol Biochem Pharmacol 146:1–57

    Article  Google Scholar 

  15. Momekov G, Bakalova A, Karaivanova M (2005) Curr Med Chem 12(19):2191–2197

    Article  Google Scholar 

  16. Hofmann A, Jaganyi D, Munro OQ, Lier G, van Eldik R (2003) Inorg Chem 42:1688–1700

    Article  CAS  Google Scholar 

  17. Hofmann A, Jaganyi D, Munro OQ, Lier G, van Eldik R (2001) Angew Chem Int Ed 40(2):1680–1683

    Google Scholar 

  18. Summa N, Schiessl W, Putcha R, van Eikema Hommes N, van Eldik R (2006) Inorg Chem 45:2948–2959

    Article  CAS  Google Scholar 

  19. Bogojeski J, Bugarčić ŽD, Puchta R, van Eldik R (2010) Eur J Inorg Chem 2010(34):5439–5445

    Article  Google Scholar 

  20. Ashby MT (1990) Comments Inorg Chem 10:297–313

    Article  CAS  Google Scholar 

  21. Schiessl WC, Summa NK, Weber CF, Gubo S, Dücker-Benfer C, Puchta R, van Eikema Hommes NT, van Eldik R (2005) ZAAC 631:2812–2819

    CAS  Google Scholar 

  22. House DA, Steel PJ, Watson AA (1987) Inorg Chim Acta 130:167–176

    Article  Google Scholar 

  23. House DA, Steel PJ, Watson AA (1986) Aust J Chem 39:1525–1536

    CAS  Google Scholar 

  24. Rauterkus MJ, Fakih S, Mock C, Puscasu I, Krebs B (2003) Inorg Chim Acta 350:355–365

    Article  CAS  Google Scholar 

  25. Puscasu I, Mock C, Rauterkus M, Röndings A, Tallen G, Gangopadhyay S, Wolff JEA, Krebs BZ (2001) Anorg Allg Chem 627:1292–1298

    Article  CAS  Google Scholar 

  26. Bugarčić ŽD, Petrović BV, Jelić R (2001) Transit Metal Chem 26:668–671

    Article  Google Scholar 

  27. Origin 7.5TM SRO, v7.5714 (B5714), Origin Lab Corporation, Northampton, One, Northampton, MA, 01060, USA, 2003

  28. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  29. Becke AD (1988) Phys Rev 1(38):3098–3100

    Article  Google Scholar 

  30. Lee C, Yang W, Parr GR (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyvev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewsi VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foesman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision DI. Gaussian, Inc., Wallingford, CT

  33. Hochreuther S, Puchta R, van Eldik R (2011) Inorg Chem 50:8984–8996

    Article  CAS  Google Scholar 

  34. Hochreuther S, Nandibewoor ST, Putcha R, van Eldik R (2012) Dalton Trans 40:512–522

    Article  Google Scholar 

  35. Hofmann A, van Eldik R (2003) Dalton Trans 2979–2985. doi:10.1039/B305174A

  36. Schmülling M, Grove DM, van Koten G, van Eldik R, Veldman N, Spek AL (1996) Organometallics 15:1384–1391

    Article  Google Scholar 

  37. Jordan RB (1991) Reaction mechanisms of inorganic and organometallic systems. Oxford University Press, New York, pp 29–74

    Google Scholar 

  38. Grey HB, Olcott R (1962) J Inorg Chem 1:481–485

    Article  Google Scholar 

  39. Atwood JD (1997) Inorganic and organometallic reaction mechanisms, 2nd edn. Wiley, New York, pp 43–61

    Google Scholar 

  40. Priqueler JRL, Butler IS, Rochon FD (2006) Appl Spectrosc Rev 41:185–226

    Article  CAS  Google Scholar 

  41. Ongoma PO, Jaganyi D (2013) Dalton Trans 42:2724–2734

    Article  CAS  Google Scholar 

  42. Ongoma PO, Jaganyi D (2012) Dalton Trans 41:10724–10730

    Article  CAS  Google Scholar 

  43. Shaira A, Reddy D, Jaganyi D (2013) Dalton Trans 42:8426–8436

    Article  CAS  Google Scholar 

  44. Reddy D, Jaganyi D (2008) Dalton Trans 6724–6731. doi:10.1039/B809697J

  45. Jaganyi D, De Boer K-L, Gertenbach J, Perils J (2008) Int J Chem Kinet 40:808–819

    Article  CAS  Google Scholar 

  46. Reddy D, Akerman KJ, Akerman MP, Jaganyi D (2011) Transit Metal Chem 36:593–602

    Article  CAS  Google Scholar 

  47. Kotowski M, van Eldik R (1986) Inorganic high pressure chemistry. Elsevier, New York, p 219

    Google Scholar 

  48. Tobe ML, Burgess J (1999) Inorganic reaction mechanisms. Addison-Wesley, Longman, Essex, p 79

    Google Scholar 

  49. Hofmann A, Dahlenburg L, van Eldik R (2003) Inorg Chem 42:6528–6538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support and a bursary to B. Khusi from the University of KwaZulu-Natal. We thank C. Grimmer for NMR analysis and C. Janse van Rensburg for MS and elementary analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Mambanda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusi, B.B., Mambanda, A. & Jaganyi, D. The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes. Transition Met Chem 41, 191–203 (2016). https://doi.org/10.1007/s11243-015-0011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-0011-6

Keywords

Navigation