Skip to main content

Advertisement

Log in

Kinetics of iron(III)-catalyzed autoxidation of sulfur(IV) in acetate buffered medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the environmentally important oxidation of sulfur(IV) by oxygen in acetate buffered medium in the presence of Fe(III) and the pH range 5.27–5.70 has been studied. The results were in agreement with the rate law:

$$ -\hbox{d}[\hbox{S}(\hbox{IV})]/\hbox{d}t=k_{0}[\hbox{S}(\hbox{IV})] +k_{\rm Fe}[\hbox{Fe}(\hbox{III})][\hbox{S}(\hbox{IV})][\hbox{H}^{+}]^{-1} $$

The role of iron(III) appears to be that of production of SO 3 radicals in Fe(III)SO 2−3 complex by an internal 1-equivalent redox reaction. Subsequently, a radical mechanism involving oxysulfur radicals, viz., SO 3 , SO 4 , and SO 5 operates. Addition of ethanol leads to the introduction of an induction period and decrease in reaction rate, most likely due to scavenging of SO 4 radicals. The value of apparent energy of activation is 45.4 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brandt C, Fabian I, van Eldik R (1994) Inorg Chem 33:687; Lente G, Fabian I (2002) J Chem Soc Dalton Trans 778

  2. Kraft J, van Eldik R (1989) Inorg Chem 28:2297

    Article  CAS  Google Scholar 

  3. Martin LR, Hill MW, Tai AF, Good TW (1991) J Geophys Res 96(D2):3085

    Article  CAS  Google Scholar 

  4. Brimblecombe P, Spedding DJ (1974) Atmos Environ 8:937

    Article  CAS  Google Scholar 

  5. Huss A Jr, Lim PK, Eckert CA (1982) J Phys Chem 86:4224

    Article  CAS  Google Scholar 

  6. Conklin MH, Hoffmann MR (1988) Environ Sci Technol 22:899

    Article  CAS  Google Scholar 

  7. Brandt C, van Eldik R (1988) Trans Met Chem 23:667

    Article  Google Scholar 

  8. Ziajka J, Beer F, Warneck P (1994) Atmos Environ 28:2549

    Article  CAS  Google Scholar 

  9. Pasuik-Bronikowska W, Bronikowski T, Ulejczyk M (2003) J Phys Chem A 1742; Ziajka P, Pasuik W-Bronikowska (2003) Atmos Environ 37:3913

  10. Fuzzi S (1978) Atmos Environ 12:1439

    Article  CAS  Google Scholar 

  11. Kuo DTF, Krik DW, Jia CQ (2006) J Sulfur Chem 27:461

    Article  CAS  Google Scholar 

  12. Yermakov AN, Purmal AP (2003) Prog React Kinet Mech 28:189

    CAS  Google Scholar 

  13. Brandt C, van Eldik R (1995) Chem Rev 95:119

    Article  CAS  Google Scholar 

  14. Huie RE, Peterson NC (1983) In: Schwartz SE (ed) Trace atmospheric constituents; properties, transformations & fates. John Wiley and Sons, New York, p 118

  15. Hoffmann MR, Boyce SD (1983) In: Schwartz SE (ed) Trace atmospheric constituents: properties, transformations and fates. John Wiley and Sons, New York, p 147

  16. Hoffman MR, Jacob DJ (1984) In: Calvert JG (ed) SO2, NO and NO2 oxidation mechanisms. Atmospheric considerations. Butterworth, p 101

  17. Rudjinski KJ (2004) J Atmos Chem 48:191

    Article  Google Scholar 

  18. Doglioti L, Hayon E (1967) J Phys Chem 71:2511

    Article  Google Scholar 

  19. Huie RE, Peterson NC (1983) In: Schwartz SE (ed) Trace atmospheric constituents; properties, transformations & fates. John Wiley and Sons, New York, p 118

  20. Manoj SV, Mishra CD, Bansal SP, Gupta KS (2000) Atmos Environ 34:4479

    Article  CAS  Google Scholar 

  21. Brodzinsky RJ, Chang SG, Markowitz SS, Novakov T (1980) J Phys Chem 84:3354

    Article  CAS  Google Scholar 

  22. Gupta KS, Bhargava P, Manoj SV (2001) Trans Met Chem 26:71

    Article  CAS  Google Scholar 

  23. Prasad DSN, Rani A, Gupta KS (1992) Environ Sci Technol 26:1361

    Article  CAS  Google Scholar 

  24. Sedlak DL, Hoigne J (1994) Environ Sci Technol 28:1898

    Article  CAS  Google Scholar 

  25. Connick RE, Zhang YX, Lee S, Adamic R, Chieng P (1995) Inorg Chem 34:4543; Connick RE, Zhang YX (1996) Inorg Chem 35:4613

  26. Manoj SV, Singh R, Sharma M, Gupta KS (2000) Indian J Chem 39A:507

    Google Scholar 

  27. Alyea HN, Backstrom HLJ (1929) J Am Chem Soc 51:90

    Article  CAS  Google Scholar 

  28. Cabelli DE, Bielski BHJ (1984) J Phys Chem 88:3111

    Article  CAS  Google Scholar 

  29. Mudgal PK, Bansal SP, Gupta KS (2007) 2nd ACCENT symposium. Urbino, Italy

  30. Warneck P (1999) Phy Chem Chem Phys 1:5471

    CAS  Google Scholar 

  31. Buxton GV, McGowan S, Salmon GA, Williums JE, Wood ND (1996) Atmos Environ 30:2483; Buxton GV, Malone TN, Salmon GA (1997) J Chem Soc Faraday Ttrans 93:2893

  32. Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17:1153

    Google Scholar 

  33. Martin LR (1984) In: Calvert JG (ed) SO2, NO and NO2 oxidation mechanisms. Atmospheric considerations. Butterworth, Boston, p 63

  34. Neytzell de Wilde FG, Traverner L (1958) In: 2nd U. N. international conference on peaceful uses for atomic energy proceedings, vol 3. p 303

  35. Tang Y, Thorn RP, Mauldin RL III, Wine PH (1988) J Photochem Photobiol 44:243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Earth System Science Division, Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoj, S.V., Mudgal, P.K. & Gupta, K.S. Kinetics of iron(III)-catalyzed autoxidation of sulfur(IV) in acetate buffered medium. Transition Met Chem 33, 311–316 (2008). https://doi.org/10.1007/s11243-007-9045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-007-9045-8

Keywords

Navigation