Skip to main content
Log in

Influence of Radiation on Non-Newtonian Fluid in the Region of Oblique Stagnation Point Flow in a Porous Medium: A Numerical Study

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This article addresses the nonlinear radiation effect on two-dimensional oblique stagnation point flow in a porous medium. Constitutive equations of viscoelastic fluid are employed in the mathematical development of the relevant problem. The resulting nonlinear analysis is computed using Chebyshev Spectral Newton Iterative Scheme. A comparative study of present results with that of previous studies have been made in a limiting sense and shown through tabular values. Excellent agreement is noted which clearly shows that the used numerical scheme is stable and the results are highly accurate. Impact of sundry variables in the flow quantities of interest are discussed. It is observed that shearing parameter \(\gamma \) helps to increase the fluid velocity. Thermal boundary layer thickness can be controlled due to small value of radiation parameter and surface heating parameter. It is also noted that with the increase in value of porosity parameter K, the velocity increases but the momentum boundary layer thickness decreases in the region of stagnation point. Moreover, the streamlines are plotted to predict the flow pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbas, Zaheer, Majeed, Abid, Javed, Tariq: Thermal radiation effects on MHD flow over a stretching cylinder in a porous medium. Heat Transf. Res. 44(8), 703–718 (2013)

  • Asaithambi, A.: A second-order finite-difference method for the Falkner-Skan equation. Appl. Math. Comput. 156(3), 779–786 (2004)

    Google Scholar 

  • Attia, H.A.: Hiemenz flow through a porous medium of a non-Newtonian Rivlin-Ericksen fluid with heat transfer. Tamkang J. Sci. Eng. 12(3), 359–364 (2009)

    Google Scholar 

  • Bataller, R.C.: Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation. Int. J. Heat Mass Transf. 50, 3152–3162 (2007)

    Article  Google Scholar 

  • Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)

    Book  Google Scholar 

  • Chen, C.H.: On the analytic solution of MHD flow and heat transfer for two types of viscoelastic fluid over a stretching sheet with energy dissipation, internal heat source and thermal radiation. Int. J. Heat Mass Transf. 53, 4264–4273 (2010)

    Article  Google Scholar 

  • Cheng, J., Liao, S., Pop, I.: Analytic series solution for unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium. Transp. Porous Media 61, 365 (2005)

    Article  Google Scholar 

  • Chiam, T.C.: Stagnation point flow towards a stretching plate. J. Phys. Soc. Jpn. 63, 2443–2444 (1994)

    Article  Google Scholar 

  • Cortell, R.: Numerical solutions of the classical Blasius flat-plate problem. Appl. Math. Comput. 170, 706–710 (2005)

    Google Scholar 

  • Dorrepaal, J.M.: An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimension. J. Fluid Mech. 163, 141–147 (1986)

    Article  Google Scholar 

  • Drazin, P., Riley, N.: The Navier-Stokes equations, a classification of flows and exact solutions. London Mathematical Society, Lecture notes series, Cambridge University Press, Cambridge (2007)

  • Elbashbeshy, E.M.A.: Radiation effect on heat transfer over a stretching surface. Can. J. Phys. 78, 1107–1112 (2000)

    Article  Google Scholar 

  • Garg, V.K., Rajagopal, K.R.: Stagnation point flow of a non-Newtonian fluid. Mech. Res. Commun. 17(6), 415–421 (1990)

    Article  Google Scholar 

  • Hossain, M.A., Takhar, H.S.: Radiation effect on mixed convection along a vertical plate with uniform surface temperature. Int. J. Heat Mass Transf. 31, 243–248 (1996)

    Article  Google Scholar 

  • Husain, I., Labropulu, F., Pop, I.: Two-dimensional oblique stagnation point flow towards a stretching surface in a viscoelastic fluid. Cent. Euro. J. Phys. 9, 176–182 (2011)

    Google Scholar 

  • Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  • Ishak, A., Nazar, R., Pop, I.: Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium. Inter. J. Heat Mass Transf. 51, 1150–1155 (2008)

    Article  Google Scholar 

  • Javed, T., Mustafa, I.: Effects of unsteady expansion / contraction of Wang’s cylinder problem with suction near a stagnation point. Asia Pac. J. Chem. Eng. 10, 184–192 (2015)

    Article  Google Scholar 

  • Javed, T., Ghaffari, A., Ahmad, H.: Numerical study of unsteady oblique stagnation point flow over an oscillating flat plate. Can. J. Phys. 93(10), 1138–1143 (2015a). doi:10.1139/cjp-2014-0270

  • Javed, T., Mustafa, I., Hussain, A.: Effect of thermal radiation on unsteady mixed convection flow near forward stagnation point over a cylinder of elliptic cross section. Therm. Sci. (2015b). doi:10.2298/tsci140926027j

  • Javed, T., Siddiqui, M.A., Mehmood, Z., Pop, I.: MHD natural convective flow in an isosceles triangular cavity filled with porous medium due to uniform/non-uniform heated side walls. Z. Naturforsch. 70(11), 919–928 (2015c). doi:10.1515/zna-2015-0232

  • Keller, H.B., Cebeci, T.: Accurate numerical methods for boundary layer flow-I. Two dimensional laminar flows. In: Proceedings of the 2nd International Conference on Numerical Methods in Fluid Dynamics, Berkeley, Calif, USA, pp. 92–100 (1971)

  • Khan, M., Abbas, Z., Hayat, T.: Analytic solution for flow of Sisko fluid through porous medium. Transp. Porous Media 71, 23–37 (2008)

    Article  Google Scholar 

  • Kumaran, V., Tamizharasi, R., Vajaravelu, K.: Approximate analytical solution for MHD stagnation point flow in porous media. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2677–2688 (2009)

    Article  Google Scholar 

  • Kuo, B.: Thermal boundary-layer problems in a semi-infinite flat plate by the differential transformation method. Appl. Math. Comput. 150(2), 303–320 (2004)

    Google Scholar 

  • Li, D., Labropulu, F., Pop, I.: Oblique stagnation-point flow of a viscoelastic fluid with heat transfer. Inter. J. Non-Linear Mech. 44, 1024–1030 (2009)

    Article  Google Scholar 

  • Lok, Y.Y., Amin, N., Pop, I.: Non-orthogonal stagnation point flow towards a stretching sheet. Inter. J. Non-Linear Mech. 41, 622–627 (2006)

    Article  Google Scholar 

  • Lok, Y.Y., Pop, I., Ingham, D.B.: Oblique stagnation slip flow of a micropolar fluid. Mechanica 45, 187–198 (2010)

    Article  Google Scholar 

  • Mahapatra, T.R., Nandy, S.K., Gupta, A.S.: Oblique stagnation point flow and heat transfer towards a shrinking sheet with thermal radiation. Meccanica 47, 1325–1335 (2012)

    Article  Google Scholar 

  • Majeed, A., Javed, T., Ghaffari, A., Rashidi, M.M.: Analysis of heat transfer due to stretching cylinder with partial slip and prescribed heat flux: a chebyshev spectral Newton iterative scheme. Alex. Eng. J. 54(4), 1029–1036 (2015)

    Article  Google Scholar 

  • Motsa, S.S., Dlamini, P.G., Khumalo, M.: Spectral relaxation method and spectral Quasi-linearization method for solving unsteady boundary layer flow problems. Adv. Math. Phys. (2014). doi:10.1155/2014/341964

  • Mukhopadhyay, S.: Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium. Int. J. Heat Mass Transf. 36, 3261–3265 (2009)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Pal, D., Mondal, H.: Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation. Commun. Nonlinear Sci. Numer. Simul. 15, 1197–1209 (2010)

    Article  Google Scholar 

  • Pal, D., Mondal, H.: Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 16, 1942–1958 (2011)

    Article  Google Scholar 

  • Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  • Raptis, A.A., Takhar, H.S.: Flow through a porous medium. Mech. Res. Commun. 14, 327–329 (1987)

    Article  Google Scholar 

  • Rashidi, M.M., Erfani, E.: A new analytical study of MHD stagnation-point flow in porous media with heat transfer. Comput. Fluids 40, 172–178 (2011)

    Article  Google Scholar 

  • Reza, M., Gupta, A.S.: Steady two-dimensional oblique stagnation point flow towards a stretching surface. Fluid Dyn. Res. 37, 334–340 (2005)

    Article  Google Scholar 

  • Reza, M., Gupta, A.S.: Some aspects of non-orthogonal stagnation point flow towards a stretching surface. Engineering 2, 705–709 (2010)

    Article  Google Scholar 

  • Sajid, M., Hayat, T.: Series solution for steady flow of a third grade fluid through porous space. Transp. Porous Media 71, 173 (2008)

    Article  Google Scholar 

  • Sajid, M., Hayat, T.: Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet. Int. Commun. Heat Mass Transf. 35, 347–356 (2008)

    Article  Google Scholar 

  • Singh, P., Tomer, N.S., Kumar, S., Sinha, D.: Effect of radiation and porosity parameter on magnetohydrodynamics flow due to stretching sheet in porous media. Therm. Sci. 15, 517–526 (2011)

    Article  Google Scholar 

  • Stuart, J.T.: The viscous flow near a stagnation point when the external flow has uniform vorticity. J. Aerosp. Sci. 26, 124–125 (1959)

    Article  Google Scholar 

  • Takhar, H.S., Soundalgekar, V.M., Gupta, A.S.: Mixed convection of an incompressible viscous fluid in a porous medium past a hot vertical plate. Inter. J. Non-Linear Mech. 25(6), 723–728 (1990)

    Article  Google Scholar 

  • Takhar, H.S., Gorla, R.S.R., Soundalgekar, V.M.: Radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate. Int. J. Num. Meth. Heat Fluid Flow 6(2), 77–83 (1996)

    Article  Google Scholar 

  • Tamada, K.J.: Two-dimensional stagnation-point flow impinging obliquely on an oscillating flat plate. J. Phys. Soc. Jpn. 47, 310–311 (1979)

    Article  Google Scholar 

  • Tooke, R.M., Blyth, M.G.: A note on oblique stagnation point flow. Phys. Fluids 20, 1–3 (2008)

    Article  Google Scholar 

  • Trefethen, L.N.: Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  • Vadasz, P.: Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, New York (2008)

    Book  Google Scholar 

  • Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor & Francis, New York (2005)

    Book  Google Scholar 

  • Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Tokyo (2010)

    Book  Google Scholar 

  • Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Inter. J. Heat Mass Transf. 24, 195–203 (1981)

    Article  Google Scholar 

  • Weidman, P.D., Putkaradze, V.: Axisymmetric stagnation flow obliquely impinging on a circular cylinder. Eur. J. Mech.-B/Fluids. 22, 123–131 (2003)

    Article  Google Scholar 

  • Weidman, P.D., Putkaradze, V.: Erratum to axisymmetric stagnation flow obliquely impinging on a circular cylinder. Euro. J. Mech.-B/Fluids 24, 788–790 (2004)

    Article  Google Scholar 

  • Wu, Q., Weinbaum, S., Andreopoulo, Y.: Stagnation point flow in a porous medium. Chem. Eng. Sci. 60, 123–134 (2005)

    Article  Google Scholar 

  • Yih, K.A.: Heat source/sink effect on MHD mixed convection in stagnation flow on a vertical permeable plate in porous media. Inter. Commun. Heat Mass Transf. 25(3), 427–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and honorable reviewers for their constructive suggestions that helped to improve the manuscript. We are also very thankful to the HEC Pakistan for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abuzar Ghaffari.

Appendix A

Appendix A

Consider the steady, two-dimensional, incompressible Darcy flow of second grade fluid near the oblique stagnation point over an impermeable surface. The surface is placed at \(y=0\), and the porous medium occupies upper half plane \(y > 0\). The non-Newtonian fluid is passing through the porous medium in the positive x direction. It is assumed that the fluid is transparent to the radiation so the radiation term will only appear in energy equation of solid phase Vafai (2005). Thus the governing equations for steady, two-dimensional, incompressible Darcy flow of second grade fluids near the oblique stagnation point are

$$\begin{aligned}&{\varvec{\nabla }} \cdot \bar{{V}}=0, \end{aligned}$$
(30)
$$\begin{aligned}&\rho \frac{\hbox {d}\bar{{V}}}{\hbox {d}t}={\varvec{\nabla }} \cdot {\varvec{\tau }} -\frac{\mu }{k_1}\bar{{V}}, \end{aligned}$$
(31)

Energy equation for solid phase:

$$\begin{aligned} ({1-\phi }){\varvec{\nabla }} \cdot \left( {k_s {\varvec{\nabla }} \bar{{T}}_s } \right) -{\varvec{\nabla }} \cdot q_{\mathrm{r}} =0, \end{aligned}$$
(32)

Energy equation for fluid phase:

$$\begin{aligned} \phi {\varvec{\nabla }} \cdot \left( {k_f {\varvec{\nabla }} \bar{{T}}_{\mathrm{f}} } \right) -\rho c_p V \cdot {\varvec{\nabla }} \bar{{T}}_{\mathrm{f}} =0, \end{aligned}$$
(33)

where \(\bar{{V}}=({u, v, 0})\) is velocity profile, \(\bar{{T}}_{\mathrm{f}}\) is temperature of fluid, \(\bar{{T}}_{\mathrm{s}}\) is temperature of solid, \(\rho \) is density, \(k_{1}\) is Darcy permeability parameter, \(\hbox {d}/{\hbox {d}t}\) is material derivative, \({\varvec{\tau }}\) is Cauchy stress tensor, \(k_{\mathrm{s}}\) is the thermal conductivity of solid, \(k_{\mathrm{f}}\) is the thermal conductivity of fluid, \(c_{\mathrm{p}}\) is specific heat at constant pressure, \(({1-\phi })\) is the ratio of area covered by solid to the total covered area of the medium and \(q_{\mathrm{r}}\) is radiative heat flux. We assumed that the no net heat transfer from solid to fluid or fluid to solid so the heat transfer in parallel from both phases. For the simplification of Eqs. (32) and (33), we assumed that there is local thermal equilibrium i.e. \(\bar{{T}}_{\mathrm{f}} =\bar{{T}}_{\mathrm{s}} =\bar{{T}}\), so by adding Eqs. (32) and (33) we get

$$\begin{aligned} -\rho C_p V.{\varvec{\nabla }} \bar{{T}}+k_{\mathrm{eff}} {\varvec{\nabla }}^{2}\bar{{T}}-{\varvec{\nabla }} \cdot q_{\mathrm{r}} =0. \end{aligned}$$
(34)

where \(k_{\mathrm{eff}} =\left( {\phi k_{\mathrm{f}} +\left( {1-\phi } \right) k_{\mathrm{s}}} \right) \) is the effective thermal conductivity for both fluid and porous medium. Upon using the Rosseland approximation for radiation, one can obtain Hossain and Takhar (1996)

$$\begin{aligned} q_\mathrm{r} =-\frac{4\sigma ^{*}}{3(\alpha _r +\sigma _s )}{\varvec{\nabla }} \bar{{T}}^{4}, \end{aligned}$$
(35)

where \(\alpha _{r} \), \(\sigma ^{*}\) and \(\alpha _{s}\) are the Rosseland mean absorption coefficient, Stefan–Boltzmann constant and the scattering coefficient, respectively. The rheological equation of second grade fluid can be expressed as

$$\begin{aligned} {\varvec{\tau }} =-pI+\mu \mathbf{A}_{1} +\alpha _{1} \mathbf{A}_2 +\alpha _2 \left( {\mathbf{A}_1 } \right) ^{2}, \end{aligned}$$
(36)

\(\bar{{p}}\) is the pressure, \(\mu \) is the dynamic viscosity of the fluid, \(\alpha _{1}\) and \(\alpha _{2} \) are normal stress moduli and the tensors \(\mathbf{A}_{1}\) and \(\mathbf{A}_{2} \) are the first and second Rivlin-Eriksen tensors which can be calculated as

$$\begin{aligned} \mathbf{A}_1= & {} \left( {{\varvec{\nabla }} \mathbf{V}} \right) +\left( {{\varvec{\nabla }} \mathbf{V}} \right) ^{T},\end{aligned}$$
(37)
$$\begin{aligned} \mathbf{A}_2= & {} \frac{\hbox {d}{} \mathbf{A}_1 }{\hbox {d}t}+\mathbf{A}_1 \left( {{\varvec{\nabla }} \mathbf{V}} \right) +\left( {{\varvec{\nabla }} \mathbf{V}} \right) ^{T}{} \mathbf{A}_{1} , \end{aligned}$$
(38)

where \(\hbox {d}/{\hbox {d}t}\) is defined as

$$\begin{aligned} \frac{\hbox {d}\left( {\cdot } \right) }{\hbox {d}t}=\frac{\partial \left( {\cdot } \right) }{\partial t}+\mathbf{V}.\left[ {{\varvec{\nabla }} \left( {\cdot } \right) } \right] . \end{aligned}$$
(39)

The thermodynamic constraints for the fluid model (Eq. 36) are compatible with Clausius-Duhem inequality and it is assumed that the free energy density of the fluid be locally at rest are (see Ref. Garg and Rajagopal 1990)

$$\begin{aligned} \mu \ge 0, \alpha _1 \ge 0, \alpha _1 +\alpha _2 =0. \end{aligned}$$
(40)

If \( \alpha _{1} =\alpha _{2} =0\), then Eq. (36) reduces to Cauchy stress tensor for Newtonian fluid. After using Eqs. (3540), Eqs. (30), (31) and (34) will take the following component form

$$\begin{aligned} \frac{\partial \bar{{u}}}{\partial \bar{{x}}}+\dfrac{\partial \bar{{v}}}{\partial \bar{{y}}}= & {} 0,\end{aligned}$$
(41)
$$\begin{aligned} \bar{{u}}\dfrac{\partial \bar{{u}}}{\partial \bar{{x}}}+\bar{{v}}\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}= & {} -\dfrac{1}{\rho }\dfrac{\partial \bar{{p}}}{\partial \bar{{x}}}+\nu \left( {\dfrac{\partial ^{2}\bar{{u}}}{\partial \bar{{x}}^{2}}+\dfrac{\partial ^{2}\bar{{u}}}{\partial \bar{{y}}^{2}}} \right) +\dfrac{\alpha _1 }{\rho }\left\{ {\dfrac{\partial }{\partial \bar{{x}}}\left[ {\begin{array}{l} 2\bar{{u}}\dfrac{\partial ^{2}\bar{{u}}}{\partial \bar{{x}}^{2}}+2\bar{{v}}\dfrac{\partial ^{2}\bar{{u}}}{\partial \bar{{x}}\partial \bar{{y}}} \\ \quad +4\left( {\dfrac{\partial \bar{{u}}}{\partial \bar{{x}}}} \right) ^{2}+2\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}\left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}+\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}} \right) \\ \end{array}} \right] } \right. \nonumber \\&+\,\left. {\dfrac{\partial }{\partial \bar{{y}}}\left[ {\begin{array}{l} \left( {\bar{{u}}\dfrac{\partial }{\partial \bar{{x}}}+\bar{{v}}\dfrac{\partial }{\partial \bar{{y}}}} \right) \left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}+\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}} \right) \\ \quad +2\dfrac{\partial \bar{{u}}}{\partial \bar{{x}}}\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}+2\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}\dfrac{\partial \bar{{v}}}{\partial \bar{{y}}} \\ \end{array}} \right] } \right\} \nonumber \\&+\dfrac{\alpha _2 }{\rho }\dfrac{\partial }{\partial \bar{{x}}}\left[ {4\left( {\dfrac{\partial \bar{{u}}}{\partial \bar{{x}}}} \right) ^{2}+\left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}+\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}} \right) ^{2}} \right] -\dfrac{\nu }{k_1 }\bar{{u}}, \end{aligned}$$
(42)
$$\begin{aligned} \bar{{u}}\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}+\bar{{v}}\dfrac{\partial \bar{{v}}}{\partial \bar{{y}}}= & {} -\dfrac{1}{\rho }\dfrac{\partial \bar{{p}}}{\partial \bar{{y}}}+\nu \left( {\dfrac{\partial ^{2}\bar{{v}}}{\partial \bar{{x}}^{2}}+\dfrac{\partial ^{2}\bar{{v}}}{\partial \bar{{y}}^{2}}} \right) +\dfrac{\alpha _1 }{\rho }\left\{ {\dfrac{\partial }{\partial \bar{{x}}}\left[ {\begin{array}{l} 2\dfrac{\partial \bar{{u}}}{\partial \bar{{x}}}\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}+2\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}\dfrac{\partial \bar{{v}}}{\partial \bar{{y}}} \\ \quad +\left( {\bar{{u}}\dfrac{\partial }{\partial \bar{{x}}}+\bar{{v}}\dfrac{\partial }{\partial \bar{{y}}}} \right) \left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}+\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}} \right) \\ \end{array}} \right] } \right. \nonumber \\&+\,\left. {\dfrac{\partial }{\partial \bar{{y}}}\left[ {\begin{array}{l} 2\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}\left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}+\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}} \right) +4\left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{y}}}} \right) ^{2} \\ 2\bar{{v}}\dfrac{\partial ^{2}\bar{{v}}}{\partial \bar{{y}}^{2}}+2\bar{{u}}\dfrac{\partial ^{2}\bar{{v}}}{\partial \bar{{x}}\partial \bar{{y}}} \\ \end{array}} \right] } \right\} \nonumber \\&+\dfrac{\alpha _2 }{\rho }\dfrac{\partial }{\partial \bar{{y}}}\left[ {4\left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{y}}}} \right) ^{2}+\left( {\dfrac{\partial \bar{{v}}}{\partial \bar{{x}}}+\dfrac{\partial \bar{{u}}}{\partial \bar{{y}}}} \right) ^{2}} \right] -\dfrac{\nu }{k_1 }\bar{{v}}, \end{aligned}$$
(43)
$$\begin{aligned} \bar{{u}}\dfrac{\partial \bar{{T}}}{\partial \bar{{x}}}+\bar{{v}}\dfrac{\partial \bar{{T}}}{\partial \bar{{y}}}= & {} \dfrac{1}{\rho c_p }\bar{{{\varvec{\nabla }} }} \cdot \left( {\left[ {k_{\mathrm{eff}} +\dfrac{16\sigma ^{*}\bar{{T}}^{3}}{3(\alpha _r +\sigma _s )}} \right] \bar{{{\varvec{\nabla }} }}\bar{{T}}} \right) , \end{aligned}$$
(44)

where \(\bar{{u}}\) and \(\bar{{v}}\) are the velocity components in \(\bar{{x}}\) and \(\bar{{y}}\) direction, respectively, \(\bar{{p}}(\bar{{x}},\bar{{y}})\) is the pressure function of the fluid and \(\nu \) is the kinematic viscosity. Here, the fluid flow is considered as potential flow, in which the flow is impinging obliquely to flat plate and far away from the plate the fluid is moving with velocity \(U_{e}(\bar{{x}},\bar{{y}})=a\bar{{x}}+b\bar{{y}}\). The boundary conditions for the present fluid flow are given by

$$\begin{aligned} \bar{{y}}=0 : \quad \bar{{u}}=0, \bar{{v}}=0, \bar{{T}}=T_w , \nonumber \\ \bar{{y}}\rightarrow \infty :\quad \bar{{u}}=a\bar{{x}}+b\bar{{y}}, \bar{{T}}=T_\infty . \end{aligned}$$
(45)

where ab are the constant having positive values with dimension inverse of time. \(T_{\infty }\) is the ambient temperature of the fluid away from the surface and \(T_{w}\) is the surface temperature. After using following non-dimensional variables

$$\begin{aligned} x=\bar{{x}}\sqrt{\frac{a}{\nu }}, y=\bar{{y}}\sqrt{\frac{a}{\nu }}, u=\frac{1}{\sqrt{\nu a}}\bar{{u}}, v=\frac{1}{\sqrt{\nu a}}\bar{{v}}, p=\frac{1}{\rho \nu a}\bar{{p}}, T=\frac{\bar{{T}}-T_\infty }{T_w -T_\infty }, \end{aligned}$$
(46)

the Eqs. (4145) take the following dimensionless form

$$\begin{aligned} \dfrac{\partial u}{\partial x}+\dfrac{\partial v}{\partial y}= & {} 0,\end{aligned}$$
(47)
$$\begin{aligned} u\dfrac{\partial u}{\partial x}+v\dfrac{\partial u}{\partial y}= & {} -\dfrac{\partial p}{\partial x}+\left( {\dfrac{\partial ^{2}u}{\partial x^{2}}+\dfrac{\partial ^{2}u}{\partial y^{2}}} \right) +\hbox {We}\left\{ {\dfrac{\partial }{\partial x}\left[ {\begin{array}{l} 2u\dfrac{\partial ^{2}u}{\partial x^{2}}+2v\dfrac{\partial ^{2}u}{\partial x\partial y} \\ \quad +4\left( {\dfrac{\partial u}{\partial x}} \right) ^{2}+2\dfrac{\partial v}{\partial x}\left( {\dfrac{\partial v}{\partial x}+\dfrac{\partial u}{\partial y}} \right) \\ \end{array}} \right] } \right. \nonumber \\&+\left. {\dfrac{\partial }{\partial y}\left[ {\begin{array}{l} \left( {u\dfrac{\partial }{\partial x}+v\dfrac{\partial }{\partial y}} \right) \left( {\dfrac{\partial v}{\partial x}+\dfrac{\partial u}{\partial y}} \right) \\ \quad +2\dfrac{\partial u}{\partial x}\dfrac{\partial u}{\partial y}+2\dfrac{\partial v}{\partial x}\dfrac{\partial v}{\partial y} \\ \end{array}} \right] } \right\} \nonumber \\&+\,\lambda \dfrac{\partial }{\partial x}\left[ {4\left( {\dfrac{\partial u}{\partial x}} \right) ^{2}+\left( {\dfrac{\partial v}{\partial x}+\dfrac{\partial u}{\partial y}} \right) ^{2}} \right] -\dfrac{\nu }{ak_1 }u, \end{aligned}$$
(48)
$$\begin{aligned} u\dfrac{\partial v}{\partial x}+v\dfrac{\partial v}{\partial y}= & {} -\dfrac{\partial p}{\partial y}+\left( {\dfrac{\partial ^{2}v}{\partial x^{2}}+\dfrac{\partial ^{2}v}{\partial y^{2}}} \right) +\hbox {We}\left\{ {\dfrac{\partial }{\partial x}\left[ {\begin{array}{l} 2\dfrac{\partial u}{\partial x}\dfrac{\partial u}{\partial y}+2\dfrac{\partial v}{\partial x}\dfrac{\partial v}{\partial y} \\ \quad +\left( {u\dfrac{\partial }{\partial x}+v\dfrac{\partial }{\partial y}} \right) \left( {\dfrac{\partial v}{\partial x}+\dfrac{\partial u}{\partial y}} \right) \\ \end{array}} \right] } \right. \nonumber \\&\quad +\,\left. {\dfrac{\partial }{\partial y}\left[ {\begin{array}{l} 2\dfrac{\partial u}{\partial y}\left( {\dfrac{\partial v}{\partial x}+\dfrac{\partial u}{\partial y}} \right) +4\left( {\dfrac{\partial v}{\partial y}} \right) ^{2} \\ 2v\dfrac{\partial ^{2}v}{\partial x^{2}}+2u\dfrac{\partial ^{2}v}{\partial x\partial y} \\ \end{array}} \right] } \right\} \nonumber \\&+\,\lambda \dfrac{\partial }{\partial y}\left[ {4\left( {\dfrac{\partial v}{\partial y}} \right) ^{2}+\left( {\dfrac{\partial v}{\partial x}+\dfrac{\partial u}{\partial y}} \right) ^{2}} \right] -\dfrac{\nu }{ak_1 }v, \end{aligned}$$
(49)
$$\begin{aligned} u\dfrac{\partial T}{\partial x}+v\dfrac{\partial T}{\partial y}= & {} \dfrac{1}{\Pr }{\varvec{\nabla }} \cdot \left( {\left[ {1+\dfrac{16\sigma ^{*}T_\infty ^{3}\left( {1+\left( {\dfrac{T_w }{T_\infty }-1} \right) T} \right) ^{3}}{3k_{\mathrm{eff}} (\alpha _r +\sigma _s )}} \right] {\varvec{\nabla }} T} \right) , \end{aligned}$$
(50)

The boundary conditions will become

$$\begin{aligned} y=0 : \quad u=0, v=0, T=1, \nonumber \\ y\rightarrow \infty : \qquad u=x+\frac{b}{a}y, T=0. \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, A., Javed, T. & Majeed, A. Influence of Radiation on Non-Newtonian Fluid in the Region of Oblique Stagnation Point Flow in a Porous Medium: A Numerical Study. Transp Porous Med 113, 245–266 (2016). https://doi.org/10.1007/s11242-016-0691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0691-1

Keywords

Navigation