Skip to main content
Log in

Ageing Scher–Montroll Transport

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We study the properties of ageing Scher–Montroll transport in terms of a biased subdiffusive continuous time random walk in which the waiting times \(\tau \) between consecutive jumps of the charge carriers are distributed according to the power law probability \(\psi (t)\simeq t^{-1-\alpha }\) with \(0<\alpha <1\). As we show, the dynamical properties of the Scher–Montroll transport depend on the ageing time span \(t_{a}\) between the initial preparation of the system and the start of the observation. The Scher–Montroll transport theory was originally shown to describe the photocurrent in amorphous solids in the presence of an external electric field, but it has since been used in many other fields of physical sciences, in particular also in the geophysical context for the description of the transport of tracer particles in subsurface aquifers. In the absence of ageing (\(t_{a}=0\)) the photocurrent of the classical Scher–Montroll model or the breakthrough curves in the groundwater context exhibit a crossover between two power law regimes in time with the scaling exponents \(\alpha -1\) and \(-1-\alpha \). In the presence of ageing a new power law regime and an initial plateau regime of the current emerge. We derive the different power law regimes and crossover times of the ageing Scher–Montroll transport and show excellent agreement with simulations of the process. Experimental data of ageing Scher–Montroll transport in polymeric semiconductors are shown to agree well with the predictions of our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akimoto, T., Barkai, E.: Aging generates regular motions in weakly chaotic systems. Phys. Rev. E 87, 032915 (2013)

    Article  Google Scholar 

  • Allegrini, P., Bellazzini, J., Bramanti, G., Ignaccolo, M., Grigolini, P., Yang, J.: Scaling breakdown: a signature of aging. Phys. Rev. E. 66, 015101 (2002)

    Article  Google Scholar 

  • Barkai, E.: Fractional Fokker–Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)

    Article  Google Scholar 

  • Barkai, E.: Aging in subdiffusion generated by a deterministic dynamical system. Phys. Rev. Lett. 90, 104101 (2003)

    Article  Google Scholar 

  • Barkai, E., Cheng, Y.C.: Aging continuous time random walks. J. Chem. Phys. 118, 6167 (2003)

    Article  Google Scholar 

  • Barkai, E., Garini, Y., Metzler, R.: Strange kinetics of single molecules in living cells. Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  • Bel, G., Barkai, E.: Weak ergodicity breaking in the continuous-time random walk. Phys. Rev. Lett. 94, 240602 (2005)

    Article  Google Scholar 

  • Berkowitz, B., Scher, H.: Anomalous transport in random fracture networks. Phys. Rev. Lett. 79, 4038 (1997)

    Article  Google Scholar 

  • Berkowitz, B., Scher, H., Silliman, S.E.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36, 149 (2000)

    Article  Google Scholar 

  • Berkowitz, B., Klafter, J., Metzler, R., Scher, H.: Physical pictures of transport in heterogeneous media: advection dispersion, random walk, and fractional derivative formulations. Water Resour. Res. 38, 1–9 (2002)

    Article  Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006)

    Article  Google Scholar 

  • Bodrova, A., Chechkin, A.V., Cherstvy, A.G., Metzler, R.: Quantifying non-ergodic dynamics of force-free granular gases. Phys. Chem. Chem. Phys. 17, 21791 (2015)

    Article  Google Scholar 

  • Bouchaud, J.P.: Weak ergodicity breaking and ageing in disordered systems. J. Phys. I (Paris) 2, 1705 (1992)

    Google Scholar 

  • Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 12 (1990)

    Article  Google Scholar 

  • Brokmann, X., Hermier, J.P., Messin, G., Desbiolles, P., Bouchaud, J.P., Dahan, M.: Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003)

    Article  Google Scholar 

  • Burov, S., Metzler, R., Barkai, E.: Aging and nonergodicity beyond the Khinchin theorem. Proc. Natl. Acad. Sci. USA 107, 13228 (2010)

    Article  Google Scholar 

  • Caspi, A., Granek, R., Elbaum, M.: Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85, 5655 (2000)

    Article  Google Scholar 

  • Cherstvy, A.G., Metzler, R.: Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys. 15, 20220 (2013)

    Article  Google Scholar 

  • Cherstvy, A.G., Metzler, R.: Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes. J. Chem. Phys. 14, 144105 (2015)

    Article  Google Scholar 

  • Davies, B.: Integral Transforms and Their Applications, vol. 41. Springer Verlag New York Inc, New York (2002)

    Google Scholar 

  • Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F., Cardarelli, F.: Probing short-range protein Brownian motion in the cytoplasm of living cells. Nature Commun. 5, 5891 (2014)

    Article  Google Scholar 

  • Donth, E.: The Glass Transition. Springer, Berlin (2001)

    Book  Google Scholar 

  • Edery, Y., Scher, H., Guadagnini, A., Berkowitz, B.: Origins of anomalous transport in heterogeneous media: structural and dynamic controls. Water Resour. Res. 50, 1490 (2014)

    Article  Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (1971)

    Google Scholar 

  • Freundlich, H., Krüger, D.: Anomalous diffusion in true solution. Trans. Faraday Soc. 31, 906 (1935)

    Article  Google Scholar 

  • Godrèche, C., Luck, J.M.: Statistics of the occupation time of renewal processes. J. Stat. Phys. 104, 489 (2001)

    Article  Google Scholar 

  • Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006)

    Article  Google Scholar 

  • Goychuk, I.: Viscoelastic subdiffusion: generalised Langevin equation approach. Adv. Chem. Phys. 150, 187 (2012)

    Google Scholar 

  • Habdas, P., Schaar, D., Levitt, A.C., Weeks, E.R.: Forced motion of a probe particle near the colloidal glass transition. EPL 67, 477 (2004)

    Article  Google Scholar 

  • He, Y., Burov, S., Metzler, R., Barkai, E.: Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett. 101, 058101 (2008)

    Article  Google Scholar 

  • Henkel, M., Pleimling, M., Sanctuary, R. (eds.): Ageing and the Glass Transition. Springer, Berlin (2007)

    Google Scholar 

  • Herzog, R.O., Polotzky, A.: Die Diffusion einiger Farbstoffe. Z. Physik. Chem. 87, 449 (1914)

    Google Scholar 

  • Honigmann, A., Müller, V., Hell, S.W., Eggeling, C.: STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. Faraday Disc. 161, 77 (2013)

    Article  Google Scholar 

  • Jeon, J.H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L., Metzler, R.: In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011)

    Article  Google Scholar 

  • Jeon, J.H., Barkai, E., Metzler, R.: Noisy continuous time random walks. J. Chem. Phys. 139, 121916 (2013)

    Article  Google Scholar 

  • Jeon, J.H., Leijnse, N., Oddershede, L., Metzler, R.: Anomalous diffusion and power-law relaxation of the time averaged mean square displacement in worm-like micellar solutions. New J. Phys. 15, 045011 (2013)

    Article  Google Scholar 

  • Jeon, J.H., Chechkin, A.V., Metzler, R.: Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Phys. Chem. Chem. Phys. 16, 15811 (2014)

    Article  Google Scholar 

  • Jung, Y.J., Barkai, E., Silbey, R.J.: Lineshape theory and photon counting statistics for blinking quantum dots: a Lévy walk process. Chem. Phys. 284, 181 (2002)

    Article  Google Scholar 

  • Kepten, E., Bronshtein, I., Garini, Y.: Ergodicity convergence test suggests telomere motion obeys fractional dynamics. Phys. Rev. E 83, 041919 (2011)

    Article  Google Scholar 

  • Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524 (2000)

    Article  Google Scholar 

  • Krüsemann, H., Godec, A., Metzler, R.: First-passage statistics for aging diffusion in systems with annealed and quenched disorder. Phys. Rev. E 89, 040101 (2014)

    Article  Google Scholar 

  • Krüsemann, H., Godec, A., Metzler, R.: Ageing first passage time density in continuous time random walks and quenched energy landscapes. J. Phys. A 48, 285001 (2015)

    Article  Google Scholar 

  • Kursawe, J., Schulz, J.H.P., Metzler, R.: Transient aging in fractional Brownian and Langevin-equation motion. Phys. Rev. E 88, 062124 (2013)

    Article  Google Scholar 

  • Lubelski, A., Sokolov, I.M., Klafter, J.: Nonergodicity mimics inhomogeneity in single particle tracking. Phys. Rev. Lett. 100, 250602 (2008)

    Article  Google Scholar 

  • Magdziarz, M., Metzler, R., Szczotka, W., Zebrowski, P.: Correlated continuous-time random walks in external force fields. Phys. Rev. E 85, 051103 (2012)

    Article  Google Scholar 

  • Mandelbrot, B.B., van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422 (1968)

    Article  Google Scholar 

  • Manzo, C., van Zanten, T.S., Saha, S., Torreno-Pina, J.A., Mayor, S., Garcia-Parajo, M.F.: PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular organization of the cell membrane. Scientific Reports, vol. 4 (2014)

  • Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys. Rev. Lett. 82, 3563–3567 (1999)

    Article  Google Scholar 

  • Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)

    Article  Google Scholar 

  • Metzler, R., Klafter, J.: Boundary value problems for fractional diffusion equations. Phys. A 278, 107 (2000)

    Article  Google Scholar 

  • Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128 (2014)

    Article  Google Scholar 

  • Monthus, C., Bouchaud, J.P.: Models of traps and glass phenomenology. J. Phys. A 29, 3847 (1996)

    Article  Google Scholar 

  • Montroll, E.W., Weiss, G.H.: Random walks on lattices II. J. Math. Phys. 6, 167 (1965)

    Article  Google Scholar 

  • Reverey, J.F., Jeon, J.H., Bao, H., Leippe, M., Metzler, R., Selhuber-Unkel, C.: Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Scientific Reports, vol. 5 (2015)

  • Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. A 110, 709–737 (1926)

    Article  Google Scholar 

  • Robert, R., Nguyen, T.H., Gallet, F., Wilhelm, C.: In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS One 4, e10046 (2010)

    Article  Google Scholar 

  • Scher, H., Montroll, E.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 15, 2455 (1975)

    Article  Google Scholar 

  • Schubert, M., Preis, E., Blakesley, J.C., Pingel, P., Scherf, U., Neher, D.: Mobility relaxation and electron trapping in a donor/acceptor copolymer. Phys. Rev. B 87, 024203 (2013)

    Article  Google Scholar 

  • Schulz, J.H.P., Barkai, E., Metzler, R.: Aging effects and population splitting in single-particle trajectory averages. Phys. Rev. Lett. 110, 020602 (2013)

    Article  Google Scholar 

  • Schulz, J.H.P., Barkai, E., Metzler, R.: Aging renewal theory and application to random walks. Phys. Rev. X 4, 011028 (2014)

    Google Scholar 

  • Shlesinger, M.F.: Asymptotic solutions of continuous time random walks. J. Stat. Phys. 5, 421 (1974)

    Article  Google Scholar 

  • Sibatov, R.T.: Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays. Phys. Scr. 84, 025701 (2011)

    Article  Google Scholar 

  • Sokolov, I.M., Klafter, J.: Field-induced dispersion in subdiffusion. Phys. Rev. Lett. 97, 140602 (2006)

    Article  Google Scholar 

  • Szymanski, J., Weiss, M.: Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103, 038102 (2009)

    Article  Google Scholar 

  • Tabei, S.M.A., Burov, S., Kim, H.J., Kuznetsov, A., Huynh, T., Jureller, J., Philipson, L.H., Dinner, A.R., Scherer, N.F.: Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. USA 110, 4911 (2013)

    Article  Google Scholar 

  • Tejedor, V., Bénichou, O., Voituriez, R., Jungmann, R., Simmel, F., Selhuber-Unkel, C., Oddershede, L., Metzler, R.: Quantitative analysis of single particle trajectories: mean maximal excursion method. Biophys. J. 98, 1364 (2010)

    Article  Google Scholar 

  • Weigel, A.V., Simon, B., Tamkun, M.M., Krapf, D.: Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl. Acad. Sci. USA 108, 6438 (2011)

    Article  Google Scholar 

  • Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87, 3518 (2004)

    Article  Google Scholar 

  • Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer. Addison Wesley Longman Publishing Co., Inc., Boston (1991)

    Google Scholar 

  • Wong, I.Y., Gardel, M.L., Reichman, D.R., Weeks, E.R., Valentine, M.T., Bausch, A.R., Weitz, D.A.: Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett. 92, 178101 (2004)

    Article  Google Scholar 

  • Xu, Q., Feng, L., Sha, R., Seemann, N.C., Chaikin, P.M.: Subdiffusion of a sticky particle on a surface. Phys. Rev. Lett. 106, 228102 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Helpful discussions with Dieter Neher are gratefully acknowledged. RM acknowledges financial support from the Academy of Finland within the Finland Distinguished Professor programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Metzler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüsemann, H., Schwarzl, R. & Metzler, R. Ageing Scher–Montroll Transport. Transp Porous Med 115, 327–344 (2016). https://doi.org/10.1007/s11242-016-0686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0686-y

Keywords

Navigation