Skip to main content
Log in

Band Fluctuation for the Average Temperature Describing a Front Wave Propagating in a Random Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this work, we have formulated a stochastic model to describe the dynamics of a wave of heat, which propagates through an inhomogeneous one-dimensional porous medium. Using a previously studied analytic but deterministic model for describing a combustion tube, we have stochastically extended it. To represent the undetermined heterogeneity of the transport properties of the medium, we have allowed simultaneously the diffusive and convective terms to be randomly functions of the position. We have calculated analytically the two first momenta of the spatially distributed temperature profile, which have permitted us to discern the effects of randomness on both the expected value of temperature profiles and its corresponding standard deviation. Our results have shown that it is possible to estimate characteristic periodic lengths associated to the spatial variations of both the convective and diffusive properties. Finally, in the limit case when the noise intensity is null, we have consistently recovered the deterministic model from which we have departed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(\varrho \) :

Absolute permeability \((\mathrm{m}^2)\)

E :

Activation energy \((\mathrm{kJ}/\mathrm{k\,mole})\)

\(g, u, \phi _i,\psi _i,i\,=\,1,2\; f(\hat{t}),f(V_D)\) :

Arbitrary functions

\(\gamma \) :

Arrhenius number

\(\xi _{i\,=\,\beta ,h}\) :

Autocorrelation length \((\mathrm{m})\)

\(c_{i\,=\,g,s}\) :

Average specific heat capacity \((\mathrm{J}/\mathrm{kg}\,^\circ \mathrm{K})\)

\(\mathbf {B}_{\mathbf{j}\,=\,\mathbf{2,3}}\) :

Column vectors

\(A_0,M_0\) :

Constant matrix

\(f_{0},F_0\) :

Constant vector

\(x_0,u_0,\omega , K_{j}, C_{j},j\,=\,1,\ldots ,3,\)    \(Q_{i\,=\,1,\ldots ,6}\) :

Constants

\(\bar{\mathbf{K}}_\mathbf{2},\bar{r}_2 \) :

Conjugate complex

\(u_j,v_j,w_j,j\,=\,1,\ldots ,3\) :

Components of a vector

\(\tilde{v}\) :

Darcy velocity \((\mathrm{m}/\mathrm{s})\)

\(\delta \) :

Dirac delta function

\(\eta _{g}\) :

Dynamic viscosity of the gas \((\mathrm{kg}/\mathrm{m}\,\mathrm{s})\)

\(\mathbf{K}_{\mathbf{j}\,=\,\mathbf{1},\ldots ,\mathbf{3}}\) :

Eigenvectors

\(r_{j\,=\,1,\ldots ,3}\) :

Eigenvalues

\(\phi \) :

Effective porosity

\(\lambda _{1}\) :

Effective thermal conductivity \((\mathrm{kW}/\mathrm{m}\,^\circ \mathrm{K})\)

Mg :

Effective molecular weight \((\mathrm{kg}/\mathrm{mol})\)

\(\alpha _{s}\) :

Effective thermal diffusivity \(\mathrm{(m}^2/\mathrm{s})\)

\({\varOmega }_{ij},i\,=\,j\,=\,1,2\) :

Entries of the exponential matrix

mn :

Exponents

\(\langle \rangle \) :

Expected value

\(\mathrm{e}^{A_0\chi }\) :

Exponential matrix

\(\eta \) :

Factor of fuel conversion

\(\psi \) :

Function of fuel conversion

\(\rho _f\) :

Fuel density per total volume \((\mathrm{kg}/\mathrm{m}^3)\)

\(\rho \) :

Gas density

v :

Gas velocity

\(\tilde{Q}\) :

Heat of combustion \((\mathrm{kJ}/\mathrm{kg}\, \mathrm{fuel})\)

\(\dot{Q}_{h}\) :

Heat loss \((\mathrm{kW}/\mathrm{m}^3)\)

\(\dot{Q}_{hD}\) :

Heat loss

h :

Heat transfer coefficient

I :

Identity matrix

b :

Imaginary part of the complex number

\(\rho _{f}^{0}\) :

Initial fuel concentration \((\mathrm{kg}/\mathrm{m}^3)\)

\(v_{i}\) :

Injection velocity \((\mathrm{m}/\mathrm{seg})\)

\(\tilde{T}_{0}\) :

Initial reservoir temperature \((^\circ \mathrm{K})\)

\(p_{i}\) :

Initial total gas pressure \((\mathrm{atm})\)

\(\rho _{gi}\) :

Injected gas density \((\mathrm{kg}/\mathrm{m}^3)\)

\(Y_{i}\) :

Inlet oxygen mass concentration

\(\beta _0\) :

Initial value for the front velocity

\(h_0\) :

Initial value for the heat transfer coefficient

\(I_{j\,=\,1,\ldots ,14}\) :

Integrals

\(k_{j\,=\,1,\ldots }\) :

Index

\(\lambda _{i\,=\,\beta ,h}\) :

Inverse of the autocorrelation length \((\mathrm{m}^{-1})\)

\(A^{-1}_0\) :

Inverse matrix

\(\tilde{\mu }\) :

Mass of oxygen/unit mass of fuel

\(\tilde{Y}\) :

Mass fraction of the oxygen

\(\tilde{\mu }_{g}\) :

Mass of gaseous products/unit mass of fuel

\({\varGamma }_{i\,=\,\beta ,h}\) :

Markovian correlation coefficient

\(\sigma _{i\,=\,\beta ,h}\) :

Noise function

\(q,q_{i\,=\,\beta ,h}\) :

Noise intensity

\(\tilde{h}\) :

Overall heat transfer coefficient \((\mathrm{kW}/\mathrm{m}^2\,^\circ \mathrm{K})\)

\(X_{j\,=\,1,\ldots ,3}\) :

Particular solutions

\(\hat{x},\tilde{x},x,x_1,x_2,x_c,\chi ,\xi ,X\) :

Position \((\mathrm{m})\)

\(\mathbf {r}\) :

Position vector

\(k_0\) :

Pre-exponential factor \((\mathrm{kW}\, \mathrm{m}/\mathrm{atm}\, \mathrm{k\,mole})\)

\(A_{N\times N},A_1,M, A_{i\,=\,\beta ,h,\beta ',h'},M_{1i\,=\,\beta ,h}\) :

Random matrix

\(f_{N\times 1},f_{1},F,F_1\) :

Random vector

W :

Reaction rate \((1/\mathrm{s})\)

\(a,a_1\) :

Real part of the complex number

H :

Reservoir thickness \((\mathrm{m})\)

\(\theta ,{\varTheta },\theta _{f},\theta _{fe}\) :

Scaled temperature

\(l^{*},Z\) :

Spatial scale factor \((\mathrm{m})\)

\(\tilde{a}_s\) :

Specific surface area per unit volume \((\mathrm{m}^2/\mathrm{m}^3)\)

\(\sigma \) :

Standard deviation

\(t^{*}\) :

Temporary scale factor \((\mathrm{seg})\)

\( \tilde{T}, \tilde{T}_f\) :

Temperature \((^\circ \mathrm{C}, ^\circ \mathrm{K})\)

\(\tilde{t},\hat{t},t\) :

Time \((\mathrm{s})\)

\(\tilde{p}\) :

Total gas pressure \((\mathrm{atm})\)

\(q_1\) :

Total heat content of the porous medium

\(\tilde{\lambda }_s,\tilde{\lambda }_g\) :

Thermal conductivity \((\mathrm{kW}/\mathrm{m}\,^\circ \mathrm{K})\)

R :

Universal gas constant \((\mathrm{kJ}/\mathrm{k\,mole}\,^\circ \mathrm{K})\)

\({\varPsi },{\varPhi },{\varOmega }_{i\,=\,1,\ldots ,4}, {\varPi }_{i\,=\,1,2} {\varPi }_{ij},i\,=\,1,2,j\,=\,\beta ,h\) :

Vectorial functions

\(f_t,f^0_t,\beta ,V_D\) :

Velocity of the combustion front

\(\rho _{i\,=\,g,s}\) :

Volumetric density \((\mathrm{kg}/\mathrm{m}^3)\)

a :

Volumetric heat capacity ratio

\(\tilde{h}/H\) :

Volumetric heat transfer coefficient \((\mathrm{kW}/\mathrm{m}^3\,^\circ \mathrm{K})\)

References

  • Akkutlu, I.Y., Yortsos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134, 229 (2003)

    Article  Google Scholar 

  • Bailey, H.R., Larkin, B.K.: Conduction-convection in underground combustion, Pet. Trans. AIME. 219, 320–331 (1960)

  • Belgrave, J.D.M., Moore, R.G., Bennion, D.W.: The thermal behavior of vertically operated near adiabatic in-situ combustion tubes. J. Pet. Sci. Eng. 5, 51 (1990)

    Article  Google Scholar 

  • Belgrave, J.D.M., Moore, R.G.: A model for improved analysis of in-situ combustion tube tests. J. Pet. Sci. Eng. 8, 75 (1992)

    Article  Google Scholar 

  • Bennion, D.W., Donnetly, J.K., Moore, R.G.: A laboratory investigation of wet combustion in the Athabasca oil sand. Oil Sands 17, 334 (1977)

    Google Scholar 

  • Bousaid, S.: Oil recovery by multiple quenched in situ combustion, SPE 16739. In: Presented at the SPE 62nd annual technical conference and exhibition, Dallas, Texas, 27–30 September 1987

  • Da Mota, J.C., Schecter, S.: Combustion fronts in a porous medium with two layers. J. Dyn. Differ. Equ. 18, 615 (2006)

    Article  Google Scholar 

  • Dietz, D.N, Weijdema, J.: Wet and partially quenched combustion, J. Pet. Technol. 20, 411–415 (1968)

  • Gottfried, B.S.: A mathematical model of thermal oil recovery in linear systems. Soc. Pet. Eng. J. 5, 196–210 (1965)

  • Greaves, M., Field, R.W., Al-Shalabe, M.I.: In situ combustion studies of North Sea Forties and Maya crude oils. Chem. Eng. Res. Des. 65, 29 (1987)

    Google Scholar 

  • He, B., Chen, Q., Castanier, L.M., Kovscek, A.R.: Improved in situ combustion performance with metallic salt additives. In: Presented at the SPE Western Regional Meeting, Irvine, California, USA, 30 March–1 April, SPE, (2005)

  • Mailybaev, A.A., Bruining, J., Marchesin, D.: Analytical formulas for in-situ combustion. SPE J. 16, 513 (2011)

    Article  Google Scholar 

  • Mamora, D.D., Kinetics of in-situ combustion, Ph.D. dissertation, Stanford University, Stanford, CA, (1993)

  • Moore, R.G., Bennion, D.W., Ursenbach, M., Gie, D., Millour, J.P.: Experimental basis for extending the oil recovery/volume burned method to wet and superwet combustion. J. Can. Pet. Technol. 27, 24–32 (1988)

  • Penberthy, W.L., Ramey, H.J. Jr.: Design and operation of laboratory combustion tubes. Soc. Pet. Eng. J. 6, 183–198 (1966)

  • Prasad, R.S., Slater, J.A.: High-pressure combustion tube tests, SPE 14919. In: Presented at the SPE/DOE fifth symposium on enhanced oil recovery, Tulsa, Oklahoma, 20–23 April 1986

  • Prats, M.: Thermal recovery. SPE Monograph Series SEP of AIME. Soc. Pet. Eng. 7 (1982)

  • Razzaghi, S, Kharrat, R., Vossoughi, S., Rashtchian, D.: Feasibility study of auto ignition in in-situ combustion process. J. Jpn. Pet. Inst. 51, 287 (2008)

  • Rodriguez, J.R.: Experimental and analytical study to model temperature profiles and stoichiometry in oxygen enriched in situ combustion, Ph.D. dissertation, submitted to the office of graduate studies of Texas A&M University, (2004)

  • Samaneh, R., Riyaz, K., Shapour, V., Davood, R.: Feasibility study of auto ignition in in-situ combustion process. J. Jpn. Pet. Inst. 51, 287 (2008)

  • Sarathi, P.S.: In-Situ Combustion Handbook-Principles and Practices. National Petroleum Technology Office. U.S. Department Of Energy, Tulsa, OK (1999)

    Book  Google Scholar 

  • Schult, D.A., Matkowsky, B.J., Volpert, V.A., Fernandez-Pello, A.C.: Forced forward smolder combustion. Combust. Flame 104, 1 (1996)

    Article  Google Scholar 

  • Smith, F.W., Perkins, T.K.: Experimental and numerical simulation studies of the wet combustion recovery process. J. Can. Pet. Technol. 12, 44–54 (1973)

  • Soliman, M.Y., Brigham, W.E., Raghavan, R.: Numerical simulation of thermal recovery processes, SPE 9942, SPE California Regional Meeting, Bakersfield, 25–26 March 1981

  • Tzanco, E.T., Moore, R.G., Belgrave, J.D.M., Ursenbach, M.G.: Laboratory combustion behaviour of countess B light oil. Paper No. CIM/SPE 90–63. In: Presented at the International Technical Meeting, Calgary, Alberta, 10–13 June 1990

  • Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Verma, V.B., Reynolds, A.C., Thomas, G.W.: A theoretical investigation of forward combustion in a one-dimensional system, SPE. In: SPE-AIME 53rd annual fall technical conference and exhibition, pp. 1–3. Houston, Tx, Oct 1978

  • Zeldovich, Y.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M.: The Mathematical Theory of Combustion and Explosion. Consultants Bureau, New York (1985)

Download references

Acknowledgments

The authors acknowledge financial support from Consejo Nacional de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reyes.

Appendix

Appendix

Here we display the explicit expresions of the integrals involved in Eqs. (5456) and Eqs. (7681) in the main text,

$$\begin{aligned} I_1= & {} \int _{0}^{\infty }\frac{2 {\varGamma }_{h}(\chi )\left( \cosh \omega \chi -1\right) }{\omega ^{2}}\mathrm{d}\chi \end{aligned}$$
(104)
$$\begin{aligned} I_2= & {} \int _{0}^{\infty }\frac{{\varGamma }_{h}(\chi )\left( \beta _{0} -\beta _{0}\cosh \omega \chi -\omega \sinh \omega \chi \right) }{ \omega ^{2}}\mathrm{d}\chi \end{aligned}$$
(105)
$$\begin{aligned} I_3= & {} \int _{0}^{\infty }\frac{{\varGamma }_{\beta }(\chi )\left( 2h_{0}+\beta _{0}^{2}+2h_{0}\cosh \omega \chi \right) }{\omega ^{2}}\mathrm{d}\chi \end{aligned}$$
(106)
$$\begin{aligned} I_4= & {} \int _{0}^{\infty }\frac{{\varGamma }_{\beta }(\chi )h_{0}\left( \beta _{0}\cosh \omega \chi +\omega \sinh \omega \chi -\beta _{0}\right) }{\omega ^{2}} \mathrm{d}\chi \end{aligned}$$
(107)
$$\begin{aligned} I_5= & {} \int _{0}^{\infty }\frac{{\varGamma }_{h}(\chi ){\varOmega } _{21}\left( 1-\mathrm{e}^{-\frac{\beta _{0}}{2}\chi }{\varOmega }_{22}\right) }{\omega }\mathrm{d}\chi \end{aligned}$$
(108)
$$\begin{aligned} I_6= & {} \int _{0}^{\infty }\frac{{\varGamma }_{\beta }(\chi )h_0\left( \beta _{0}-\beta _{0}\cosh \omega \chi -\omega \sinh \omega \chi \right) }{\omega ^{2} }\mathrm{d}\chi \end{aligned}$$
(109)
$$\begin{aligned} I_7= & {} \int _{0}^{\infty }\frac{{\varGamma }_{h}(\chi ){\varOmega }_{21}}{\omega }\mathrm{d}\chi , \end{aligned}$$
(110)

such that, \(I_{8}=4I_{3}\), \(I_{9}=4I_{6}\) and

$$\begin{aligned} I_{10}= & {} \int _{0}^{\infty }\frac{2{\varGamma }_{h}(\chi )\left( 2h_{0}+2h_{0} \cosh (\omega \chi )+g\right) }{\omega ^{2}}\mathrm{d}\chi ;\nonumber \\ g\equiv & {} \beta _{0}^{2}\cosh (\omega \chi )+\beta _{0} \omega \sinh (\omega \chi )\end{aligned}$$
(111)
$$\begin{aligned} I_{11}= & {} \int _{0}^{\infty }\frac{2{\varGamma }_{h}(\chi )(2-2\cosh (\omega \chi ))}{\omega ^{2}}\mathrm{d}\chi \end{aligned}$$
(112)
$$\begin{aligned} I_{12}= & {} \int _{0}^{\infty }\frac{{\varGamma }_{\beta }(\chi )(\beta _{0}-\beta _{0} \cosh (\omega \chi )+\omega \sinh (\omega \chi ))}{\omega ^{2}}\mathrm{d}\chi \end{aligned}$$
(113)
$$\begin{aligned} I_{13}= & {} \int _{0}^{\infty }\frac{{\varGamma }_{\beta }(\chi )(4h_{0}+\beta _{0}^{2})}{\omega ^{2}}\mathrm{d}\chi \end{aligned}$$
(114)
$$\begin{aligned} I_{14}= & {} \int _{0}^{\infty }\frac{2{\varGamma }_{h}(\chi ) (\beta _{0}\cosh (\omega \chi )-\beta _{0}+\omega \sinh (\omega \chi ))}{\omega ^{2}}\mathrm{d}\chi , \end{aligned}$$
(115)

here,

$$\begin{aligned} {\varOmega }_{21}(\chi )\equiv \left( \mathrm{e}^{\omega \chi }-1\right) \mathrm{e}^{\frac{1}{2}\left( \beta _0-\omega \right) \chi } \end{aligned}$$
(116)

and

$$\begin{aligned} {\varOmega }_{22}(\chi )\equiv \left( \cosh \left[ \frac{\omega }{2}\chi \right] +\frac{\beta _0 \sinh \left[ \frac{\omega }{2}\chi \right] }{\omega }\right) , \end{aligned}$$
(117)

where \(\omega =\sqrt{4h_0+\beta _0^2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, A., Reyes, J.A. Band Fluctuation for the Average Temperature Describing a Front Wave Propagating in a Random Porous Medium. Transp Porous Med 109, 633–658 (2015). https://doi.org/10.1007/s11242-015-0540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0540-7

Keywords

Navigation