Skip to main content
Log in

Mixed Convection in an Inclined Channel Filled with Porous Material Having Time-Periodic Boundary Conditions: Steady-Periodic Regime

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper reports an investigation of the hydrodynamic and thermal behaviour in a steady-periodic regime of a fully developed laminar mixed convection flow in an inclined channel filled with porous material. One of the channel walls is kept at a constant temperature, while the other is heated sinusoidally. The flow formation inside the porous media is modelled using Darcy–Brinkman model. The resulting governing dimensionless momentum and energy equations are separated into steady and periodic parts and solved analytically by the method of undetermined coefficients. In order to see the effect of the governing parameters on the thermal and hydrodynamic behaviour of the fluid flow, the results are depicted pictorially. These are seen to depend strongly on the dimensionless frequency of the periodic heating, Darcy number and the Prandtl number of the working fluid. The result is also seen to be in strong agreement with the existing analytical work, when the Darcy number is large. For sufficiently high Prandtl number, it is observed that the amplitude of the friction factor oscillation is maximised at a resonance frequency at the wall where there is periodic heating; also increasing Darcy number (Da) increases the amplitude of the friction factor oscillation, while it reduces the resonance frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AB :

Functions defined by Eq. (7)

D :

Hydraulic diameter, 4L

Da :

Darcy number

\(f_{1}\) :

Fanning friction factor at the wall \(Y=-L\)

\(f_{2}\) :

Fanning friction factor at the wall \(Y=L\)

\(f_{1a}^*,\,f_{1b}^*\) :

Complex fanning friction factor defined in Eq. (51)

\(f_{2a}^*,\,f_{2b}^*\) :

Complex fanning friction factor defined in Eq. (52)

\(\mathbf{g}\) :

Gravitational acceleration

g :

Magnitude of the gravitational acceleration

Gr :

Grashof number

i :

Imaginary unit

k :

Thermal conductivity

K :

Permeability of the medium

L :

Channel half width

p :

Pressure

P :

Difference between the pressure and the hydrostatic pressure

Pr :

Prandtl number

q :

Heat flux per unit area

Re :

Reynolds number

\(\mathfrak {R}e\) :

Real part of a complex number

t :

Time

T :

Temperature

\(T_0\) :

Average temperature in a channel section

\(T_1\) :

Temperature of the wall \(Y=-L\)

\(T_2\) :

Time average temperature of the wall \(Y=L\)

u :

Dimensionless velocity

\(u^*,\,u_a^*,\,u_b^*\) :

Dimensionless complex-valued function

U :

Fluid velocity

\(U_{0}\) :

Average velocity

XY :

Rectangular Cartesian coordinates

y :

Dimensionless coordinate

\(\alpha \) :

Thermal diffusivity

\(\beta \) :

Volumetric coefficient of thermal expansion

\(\Delta \) :

Amplitude of the wall temperature oscillations

\(\gamma \) :

\(=\dfrac{\nu _\mathrm{eff}}{\nu }\)

\(\lambda \) :

Dimensionless parameter

\(\lambda ^*,\,\lambda _a^*,\,\lambda _b^*\) :

Dimensionless complex-valued function

\(\eta \) :

Dimensionless parameter

\(\theta ^*,\,\theta _a^*,\,\theta _b^*\) :

Dimensionless complex-valued function

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\nu _\mathrm{eff}\) :

Effective kinematic viscosity

\(\varPhi \) :

Dimensionless heat flux

\(\varPhi _a^*,\,\varPhi _b^*\) :

Dimensionless complex value function

\(\xi \) :

Dimensionless parameter defined in Eq. (11)

\(\chi \) :

Dimensionless parameter defined in Eq. (11)

\(\varphi \) :

Tilt angle

\(\varrho \) :

Mass density

\(\varrho _0\) :

Mass density for \(T=T_0\)

\(\tau _w\) :

Average wall shear stress

\(\omega \) :

Frequency of the wall temperature oscillation

\(\varOmega \) :

Dimensionless frequency

References

  • Antohe, B.V., Lage, J.L.: Amplitude effect on convection induced by time periodic boundary conditions. Int. J. Heat Mass Transf. 39, 1121–1133 (1996)

    Article  Google Scholar 

  • Bagchi, A., Kulacki, F.A.: Natural Convection in Superposed Fluid-Porous Layers. Springer, New York (2014)

    Book  Google Scholar 

  • Bar-Cohen, A., Rohsenow, W.M.: Thermally optimum spacing of vertical natural convection cooled parallel plates. ASME J. Heat Transf. 106, 116–123 (1984)

    Article  Google Scholar 

  • Barletta, A., Zanchini, E.: On the choice of the reference temperature for fully developed mixed convection in a vertical channel. Int. J. Heat Mass Transf. 42, 3169–3181 (1999)

    Article  Google Scholar 

  • Barletta, A., Zanchini, E.: Time-periodic laminar mixed convection in an inclined channel. Int. J. Heat Mass Transf. 46, 551–563 (2003)

    Article  Google Scholar 

  • Beckermann, C., Viskanta, R.: Forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous medium. Int. J. Heat Mass Transf. 30, 1547–1551 (1987)

    Article  Google Scholar 

  • Chung, P.M., Anderson, A.D.: Unsteady laminar free convection. ASME J. Heat Mass Transf. 83, 473–478 (1961)

    Article  Google Scholar 

  • Cimpean, D., Pop, I., Ingham, D.B., Merkin, J.H.: Fully developed mixed convection between inclined plates filled with a porous medium. Transp. Porous Media 77, 87–102 (2009)

    Article  Google Scholar 

  • Guerroudj, H., Kahalerras, H.: Mixed convection in an inclined channel with heated porous blocks. Int. J. Num. Methods Heat Fluid Flow 22(7), 839–861 (2012)

    Article  Google Scholar 

  • Kaviany, M.: Laminar flow through porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 28, 851–888 (1985)

    Article  Google Scholar 

  • Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)

    Book  Google Scholar 

  • Kou, H.S., Lu, K.T.: The analytical solution of mixed convection in a vertical channel embedded in a porous media with asymmetric wall heat fluxes. Int. J. Heat Mass Transf. 20, 737–750 (1993)

    Article  Google Scholar 

  • Kwak, H.S., Kvwahara, J.M., Hyun, J.M.: Resonant enhancement of natural convection heat transfer in a square enclosure. Int. J. Heat Mass Transf. 41, 2837–2846 (1998)

    Article  Google Scholar 

  • Lage, J.L., Bejan, A.: The resonance of natural convection in an enclosure heated periodically from the side. Int. J. Heat Mass Transf. 36, 2027–2038 (1993)

    Article  Google Scholar 

  • Malashetty, M.S., Umavathi, J.C., Prathap, J.K.: Convective flow and Heat transfer in an inclined composite porous medium. J. Porous Media 4(1), 15–22 (2001)

    Article  Google Scholar 

  • Nanda, R.J., Sharma, V.P.: Free convection laminar boundary layer in oscillatory flow. J. Fluid Mech. 15, 419–428 (1963)

    Article  Google Scholar 

  • Nawaf, S.H.: Natural convection in a square porous cavity with an oscillating wall temperature. Arab. J. Sci. Eng. 31(1b), 35–46 (2006)

    Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  Google Scholar 

  • Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  • Sparrow, E.M., Gregg, J.L.: Newly quasi-steady free-convection heat transfer in gases. J. Heat Mass Transf. Trans. ASME Ser. 82, 258–260 (1960)

    Article  Google Scholar 

  • Tien, C.L., Hunt, M.L.: Boundary layer flow and heat transfer in porous beds. Chem. Eng.: Process Intensif. 21(1), 53–63 (1987)

    Google Scholar 

  • Umavathi, J.C., Kumar, J.P., Chamkha, A.J., Pop I.: Mixed Convection in a vertical porous channel. Transp. Porous Media. 61, 315–335 (2005)

  • Umavathi, J.C., Chamkha, A.J., Mateen, A., Al-Mudhaf, A.: Oscillatory flow and heat transfer in a horizontal composite porous medium channel. Int. Heat Tech. 24, 75–86 (2006)

    Google Scholar 

  • Umavathi, J.C., Shekar, M.: Mixed Convection flow and heat transfer in a vertical wavy channel containing porous and fluid layer with thermal waves. Int. J. Eng. Sci. Technol. 3(6), 196–219 (2011)

    Google Scholar 

  • Vadasz, P. (ed.): Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, Berlin (2008)

  • Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Tokyo (2010)

    Book  Google Scholar 

  • Vafai K, Kim, S.J.: Forced convection in a channel filled with a porous medium: An exact solution. ASME J. Heat Transf. 111, 1103–1106 (1989)

  • Vafai, K., Tien, C.L.: Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 25, 1183–1190 (1982)

    Article  Google Scholar 

  • Wang, C.Y.: Free convection between vertical plates with periodic heat input. ASME J. Heat Transf. 110, 508–511 (1988)

    Article  Google Scholar 

  • Yang, J.W., Scaccia, C., Goodman, J.: Laminar natural convection about vertical plates with oscillatory surface temperature. Trans. ASME J. Heat Transf. 96, 9–14 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Daramola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Daramola, D. & Ajibade, A.O. Mixed Convection in an Inclined Channel Filled with Porous Material Having Time-Periodic Boundary Conditions: Steady-Periodic Regime. Transp Porous Med 109, 495–512 (2015). https://doi.org/10.1007/s11242-015-0533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0533-6

Keywords

Navigation