Skip to main content

Advertisement

Log in

Volume Averaging Study of the Capacitive Deionization Process in Homogeneous Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Ion storage in porous electrodes is important in applications such as energy storage by supercapacitors, water purification by capacitive deionization, extraction of energy from a salinity difference and heavy ion purification. A model is presented to simulate the charge process in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. Transport between the electrolyte solution and the charged wall is described using the Gouy–Chapman–Stern model. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. The source terms that appear in the average equations are calculated using numerical computations. An alternative way to deal with the source terms is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(A_{\upalpha \upbeta }\) :

Interphase area \(\upalpha \)\(\upbeta \) (m\(^{2}\))

\(a_{v}\) :

Effective area (m\(^{2}\,\)m\(^{-3})\)

\(c_{i}\) :

Ion concentration (mol m\(^{-3})\)

\(C_{\infty }\) :

Salt bulk concentration (mol m\(^{-3})\)

\({\tilde{c}}_\upalpha \) :

Deviation salt concentration in \(\upalpha \)-phase (mol m\(^{-3})\)

\(\langle c_\upalpha \rangle ^{\upalpha }\) :

Intrinsic phase average concentration (mol m\(^{-3})\)

\({\underline{\underline{D}}}_\mathrm{eff}\) :

Effective diffusivity tensor (m\(^{2}\,\mathrm{s}^{-1})\)

\(D_{i}\) :

Diffusion coefficient (m\(^{2}\,\hbox {s}^{-1})\)

\(\underline{f}_{1}\) :

Closure vector field (m)

\(f_{2}\) :

Closure scalar field (s m\(^{-1})\)

\(F\) :

Faraday constant (C mol\(^{-1})\)

\(\underline{g}_{1}\) :

Closure vector field (m)

\(g_{2}\) :

Closure scalar field \((\hbox {V m}^{2}\,\hbox {s mol}^{-1})\)

\({\underline{\underline{I}}}\) :

Unit tensor (dim.)

\(\underline{I}_{e}\) :

Ionic current per unit area \((\hbox {A m}^{-2})\)

\(J_\mathrm{charge}\) :

Charge-transfer flux \((\hbox {C m}^{-2}\,\hbox {s}^{-1})\)

\(J_\mathrm{salt}\) :

Salt molar flux \((\hbox {mol m}^{-2}\,\hbox {s}^{-1})\)

\(l_{\upalpha }\) :

Microscopic length scale (m)

\(\underline{l}_{i}\) :

Lattice vectors (m)

\(L\) :

Macroscopic length scale (m)

\(L_{c}\) :

Macroscopic length scale for the gradient (m)

\(\underline{n}_{\upalpha \upbeta }\) :

Unit normal vector from the \(\upalpha \) into the \(\upbeta \)-phase (dim.)

\(N_{i}\) :

Ion flux \((\hbox {mol m}^{-2}\,\hbox {s}^{-1})\)

\(q\) :

Excess charge density \((\hbox {C m}^{-2})\)

\(\langle q\rangle _{\upalpha \upbeta }\) :

Excess charge area averaged \((\hbox {C m}^{-2})\)

\(r_{o}\) :

Radius of the representative elementary volume (m)

\(t\) :

Time (s)

\(t_{C}^{\bullet }\) :

Characteristic time for the supercapacitor regime (s)

\(t_{D}^{\bullet }\) :

Characteristic time for the desalination regime (s)

\(u_{i}\) :

Isotropic mobility \((\hbox {m}^{2}\,\hbox {V}^{-1}\,\hbox {s}^{-1})\)

\({\underline{\underline{U}}}_\mathrm{eff}\) :

Mobility tensor \((\hbox {m}^{2}\,\hbox {V}^{-1}\,\hbox {s}^{-1})\)

\(V_{\upalpha }\) :

\(\upalpha \)-Phase in REV \((\hbox {m}^{3})\)

\(V_\mathrm{T}\) :

Thermal voltage (V)

\(w\) :

Excess salt density \((\hbox {mol m}^{-2})\)

\(\langle w\rangle _{\upalpha \upbeta }\) :

Excess salt adsorption area average \((\hbox {mol m}^{-2})\)

\(x\) :

Spatial position (m)

\(z_{i}\) :

Ionic charge number (dim.)

\(\Delta \phi _\mathrm{D}\) :

Diffuse-layer potential difference (V)

\(\Delta \phi _\mathrm{Stern}\) :

Stern-layer potential difference (V)

\(\varepsilon _{\upalpha }\) :

\(\upalpha \)-Phase volume fraction (dim.)

\(\phi \) :

Electrostatic potential (V)

\(\tilde{\phi }_\upalpha \) :

Potential deviation in \(\upalpha \)-phase (V)

\(\langle \phi _\upalpha \rangle ^{\upalpha }\) :

Intrinsic phase average potential (V)

\(\kappa \) :

Effective conductivity \((\hbox {A V}^{-1}\,\hbox {m}^{-1})\)

\(\lambda _\mathrm{B}\) :

Bjerrum length (m)

\(\lambda _\mathrm{D}\) :

Debye length (m)

\(\psi _{\upalpha }\) :

Generic variable in \(\upalpha \)-phase

\(\underline{\nabla }\) :

Nabla operator \((\hbox {m}^{-1})\)

\(i\) :

Component \(i\)

\(\upalpha \) :

\(\upalpha \)-Phase

\(\upbeta \) :

\(\upbeta \)-Phase

\(\upalpha \upbeta \) :

\(\upalpha \)\(\upbeta \) interphase

\(\upalpha \) :

\(\upalpha \)-Phase

\(\upbeta \) :

\(\upbeta \)-Phase

References

  • Anderson, M.A., Cudero, A.L., Jesus Palma, J.: Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim. Acta 55, 3845–3856 (2010)

    Article  Google Scholar 

  • Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse–charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004)

    Article  Google Scholar 

  • Biesheuvel, P.M., Bazant, M.Z.: Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E 81, 031502 (2010)

    Article  Google Scholar 

  • Biesheuvel, P.M., van Soestbergen, M., Bazant, M.Z.: Imposed currents in galvanic cells. Electrochim. Acta 54, 4857 (2009)

    Article  Google Scholar 

  • Biesheuvel, P.M., Yu, F., Bazant, M.Z.: Diffuse charge and Faradaic reactions in porous electrodes. Phys. Rev. E 83, 061507 (2011)

    Article  Google Scholar 

  • Biesheuvel, P.M., Fu, Y., Bazant, M.Z.: Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes. Russ. J. Electrochem. 48, 580 (2012)

    Article  Google Scholar 

  • Biesheuvel, P.M., Porada, S., Levi, M., Bazant, M.Z.: Attractive forces in microporous carbon electrodes for capacitive deionization. J. Solid State Electrochem. 18, 1365 (2014)

    Article  Google Scholar 

  • Bockris, J.O., Reddy, A.K.N., Gamboa-Aldeco, M.: Modern Electrochemistry: Fundamentals of Electrodics, vol. 2b. Plenum Press, New York (2000)

    Google Scholar 

  • Borges da Silva, E.A., Souza, D.P., Ulson de Souza, A.A., Guelli U. de Souza, S.M.A.: Prediction of effective diffusivity tensors for bulk diffusion with chemical reactions. Braz. J. Chem. Eng. 24, 47–60 (2007)

    Google Scholar 

  • Brenner, H.: Dispersion resulting from flow through spatially periodic porous media. Trans. R. Soc. 297, 81–133 (1980)

    Article  Google Scholar 

  • Buyuktas, D., Wallender, W.W.: Dispersion in spatially periodic porous media. Heat Mass Transf. 40, 261–270 (2004)

    Article  Google Scholar 

  • Carbonell, R.G., Whitaker, S.: Dispersion in pulsed systems—II Theoretical developments for passive dispersion in porous media. Chem. Eng. Sci. 38, 1795–1802 (1983)

    Article  Google Scholar 

  • Carbonell, R.G., Whitaker, S.: Heat and Mass Transfer in Porous Media. In: Bear, J., Corapcioplu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media, p. 121. Marinus Nijhoff, Dordrecht (1984)

    Chapter  Google Scholar 

  • Chu, K.T., Bazant, M.Z.: Nonlinear electrochemical relaxation around conductors. Phys. Rev. E 74, 011501 (2006)

    Article  Google Scholar 

  • Crapiste, G.H., Rotstein, E., Whitaker, S.: A general closure scheme for the method of volume averaging. Chem. Eng. Sci. 41, 227–235 (1986)

    Article  Google Scholar 

  • Currie, J.A.: Gaseous diffusion in porous media. Part 2—Dry granular materials. Br. J. Appl. Phys. 11, 318 (1960)

    Article  Google Scholar 

  • Gabitto, J.F.: Effect of the microstructure on anisotropic diffusion in porous media. Int. Commun. Heat Mass Transf. 18, 459–466 (1991)

    Article  Google Scholar 

  • Gray, W.G.: A derivation of the equations for multiphase transport. Chem. Eng. Sci. 30, 229 (1975)

    Article  Google Scholar 

  • Gray, W.G., Lee, P.C.Y.: On the theorems for local volume averaging of multiphase systems. Int. J. Multiphase Flow 3, 333–340 (1977)

    Article  Google Scholar 

  • Johnson, A.M., Newman, J.: Desalting by means of carbon electrodes. J. Electrochem. Soc. 118, 510–517 (1971)

    Article  Google Scholar 

  • Kim, J.H., Ochoa, J.A., Whitaker, S.: Diffusion in anisotropic porous media. Transp. Porous Media 2, 327–356 (1987)

    Article  Google Scholar 

  • Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  • Liu, H.-J., Wang, X.-M., Cui, W.-J., Dou, Y.-Q., Zhao, D.-Y., Xia, Y.Y.: Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J. Mater. Chem. 2010(20), 4223–4230 (2010)

    Article  Google Scholar 

  • Locke, B.R.: Electrophoretic transport in porous media: a volume-averaging approach. Ind. Eng. Chem. Res. 37, 615–625 (1998)

    Article  Google Scholar 

  • Mathioulakis, E., Belessiotis, V., Delyannis, E.: Desalination by using alternative energy: review and state of the art. Desalination 203, 346–365 (2007)

    Article  Google Scholar 

  • Newman, J., Thomas-Alyea, K.E.: Electrochemical Systems, 3rd edn. Wiley, New York (2004). (Chap. 22)

    Google Scholar 

  • Nozad, I., Carbonell, R.G., Whitaker, S.: Heat conduction in multiphase systems—I. Theory and experiment for two-phase systems. Chem. Eng. Sci. 40, 843 (1985)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Stroeve, P., Whitaker, S.: Diffusive transport in two-phase media: Spatially periodic models and Maxwell’s theory for isotropic and anisotropic systems. Chem. Eng. Sci. 49, 709–726 (1994)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Del Rio, J.A., Whitaker, S.: Bulk and surface diffusion in porous media: an application of the surface-averaging theorem. Chem. Eng. Sci. 48, 2061–2082 (1993)

    Article  Google Scholar 

  • Paine, M.A., Carbonell, R.G., Whitaker, S.: Dispersion in pulsed systems—I Heterogeneous reaction and reversible adsorption in capillary tubes. Chem. Eng. Sci. 38, 1781–1793 (1983)

    Article  Google Scholar 

  • Pivonka, P., Smith, D., Gardiner, B.: Investigation of Donnan equilibrium in charged porous materials—a scale transition analysis. Transp. Porous Media 69, 215–237 (2007)

    Article  Google Scholar 

  • Pivonka, P., Narsilio, G., Li, R., Smith, D., Gardiner, B.: Electrodiffusive transport in charged porous media: from the particle-level scale to the macroscopic scale using volume averaging. J. Porous Media 12, 101–118 (2009)

    Article  Google Scholar 

  • Porada, S., Zhao, R., Van der Wal, A., Presser, V., Biesheuvel, P.M.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013)

    Article  Google Scholar 

  • Quintard, M.: Diffusion in isotropic and anisotropic porous systems: three-dimensional calculations. Transp. Porous Media 11, 187–199 (1993)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in chemical and mechanical heterogeneous porous media IV: large-scale mass equilibrium for solute transport with adsorption. Adv. Water Resour. 22, 33–57 (1998)

    Article  Google Scholar 

  • Ryan, D., Carbonell, R.G., Whitaker, S.: Effective diffusivities for catalyst pellets under reactive conditions. Chem. Eng. Sci. 35, 10–16 (1980)

    Article  Google Scholar 

  • Satterfield, C.N.: Mass Transfer in Heterogeneous Catalysis. MIT Press, Cambridge (1970)

    Google Scholar 

  • Sharma, K., Mayes, R.T., Kiggans Jr, J.O., Yiacoumi, S., Gabitto, J., DePaoli, D.W., Dai, S., Tsouris, C.: Influence of temperature on the electrosorption of ions from aqueous solutions using mesoporous carbon materials. Sep. Purif. Technol. 116, 206–213 (2013)

    Article  Google Scholar 

  • Scheiner, S., Pivonka, P., Smith, D.: Two-scale model for electro-diffusive transport through charged porous materials. In: IOP Conference Series: Materials Science and Engineering, vol. 10, p. 012112 (2010)

  • Shiklomanov, I.: World fresh water resources. In: Gleick, P.H. (ed.) Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press, New York (1993)

  • Spiegler, K.S., El-Sayed, Y.M.: The energetics of desalination processes. Desalination 134, 109–128 (2001)

    Article  Google Scholar 

  • Tiedemann, W., Newman, J.: Porous-electrode theory with battery applications. AIChE J. 21, 25 (1975)

    Article  Google Scholar 

  • Tsouris, C., Mayes, R., Kiggans, J., Sharma, K., Yiacoumi, S., DePaoli, D., Dai, S.: Mesoporous carbon for capacitive deionization of saline water. Environ. Sci. Technol. 45, 10243–10249 (2011)

    Article  Google Scholar 

  • USGS: Distribution of Earth’s water, taken from USGS website: http://water.usgs.gov/edu/earthwherewater.html, 17 March 2014

  • Ulson de Souza, A.A., Whitaker, S.: The modeling of a textile dyeing process utilizing the method of volume averaging. Braz. J. Chem. Eng. 20, 445–453 (2003)

    Google Scholar 

  • Valdes-Parada, F.J., Alvarez-Ramirez, J.: On the effective diffusivity under chemical reaction in porous media. Chem. Eng. Sci. 65, 4100–4104 (2010)

    Article  Google Scholar 

  • Villar, I., Roldan, S., Ruiz, V., Granda, M., Blanco, C., Menendez, R., Ricardo Santamarıa, R.: Capacitive deionization of NaCl solutions with modified activated carbon electrodes. Energy Fuels 24, 3329–3333 (2010)

    Article  Google Scholar 

  • Whitaker, S.: Local thermal equilibrium: an application to packed bed catalytic reactor design. Chem. Eng. Sci. 41, 2029 (1986)

    Article  Google Scholar 

  • Whitaker, S.: The Method of Volume Averaging. Kluwer, Dordrecht (1999)

    Book  Google Scholar 

  • Zhao, R., Biesheuvel, P.M., Miedema, H., Brunning, H., van de Wal, A.: Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. J. Phys. Chem. Lett. 1, 205–210 (2010)

    Article  Google Scholar 

  • Zhou, L., Li, L., Song, H., Morris, G.: Using mesoporous carbon electrodes for brackish water desalination. Water Res. 42, 2340–2348 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially conducted at the Oak Ridge National Laboratory (ORNL) and supported by the Laboratory Director’s Research and Development Seed Program of ORNL. ORNL is managed by UT-Battelle, LLC, under Contract DE-AC05-0096OR22725 with the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Gabitto.

Appendix

Appendix

1.1 Order of Magnitude Analysis in Eq. (18)

$$\begin{aligned} \varepsilon _{\upalpha } \partial \langle {c}_\upalpha \rangle ^{\upalpha }/\partial t= & {} \underline{\nabla } \bullet ({\underline{\underline{D}}}_{\mathrm{eff}} \bullet \underline{\nabla }\langle {c}_\upalpha \rangle ^{\upalpha }) + \underline{\nabla } \bullet (D \varepsilon _{\upalpha } \underline{u} \partial \langle {w}\rangle _{\upalpha \upbeta } /\partial t) - a_{v} \partial \langle {w}\rangle _{\upalpha \upbeta } /\partial t, \\&O\left( \frac{{D}{\left\langle {{c}_{\upalpha }} \right\rangle }^{\upalpha }}{{L L}_{c}}\right) , \quad O\left( \frac{{1}}{{L}}\frac{\partial {\left\langle {w} \right\rangle }_{{\upalpha \upbeta }}}{\partial {t}}\right) , \quad O\left( \frac{{1}}{{l}_\upalpha }\frac{\partial {\left\langle {w} \right\rangle }_{{\upalpha \upbeta }}}{\partial {t}}\right) .\nonumber \end{aligned}$$
(18)

Using, \(- \underline{n}_{\upalpha \upbeta }\bullet \underline{\nabla }{f}_2 = 1/D\), we get \({f}_2 \approx O({l}_\upalpha /D)\) because \(f_{2}\) varies with \(l_{\upalpha }\). From \(\underline{{u}}=\frac{{1}}{{V}_{\upalpha }}\int \limits _{{A}_{{\upalpha \upbeta }}} {{\underline{{n}}}_{{\upalpha \upbeta }} {f}_{2} { \hbox { d}A}} \), using mean value theorem and \({f}_2 \approx O({l}_\upalpha /D)\) we get, \(\underline{{u}}\approx O{(1 / D)}\). Here, we used \(A/V_{\upalpha } = a_{V}\) and \({a}_{V} \approx O({l}_\upalpha ^{{-1}})\).

1.2 Order of Magnitude Analysis in Eq. (32)

$$\begin{aligned}&\underline{\nabla } \bullet \{{\underline{\underline{U}}}_{\mathrm{eff}} \bullet \langle {c}_\upalpha \rangle ^{\upalpha } \underline{\nabla }\langle \phi _\upalpha \rangle ^{{\upalpha }}\} + \underline{\nabla }{\bullet }\left\{ \frac{{\varepsilon }_{\upalpha } { U}{\left\langle {{c}_{\upalpha }} \right\rangle }^{\upalpha }}{{V}_{\upalpha }}\left( \int \limits _{{A}_{{\upalpha \upbeta }}} {\underline{{n}}}_{{\upalpha \upbeta }} { g}_{2} \hbox { d}A\right) \frac{\partial {\left\langle {q} \right\rangle }_{{\upalpha \upbeta }}}{\partial {t}}\right\} \nonumber \\&\quad O\left( \frac{{U \varepsilon }_\upalpha {\left\langle {{c}_{\upalpha }} \right\rangle }^{\upalpha } {\left\langle \phi \right\rangle }^{\upalpha }}{{L L}_{c}}\right) , \quad O\left( \frac{{1}}{{L}}\frac{\partial {\left\langle {q} \right\rangle }_{{\upalpha \upbeta }}}{\partial {t}}\right) ,\nonumber \\&\qquad +\, \underline{\nabla } \bullet \left\{ \frac{{\varepsilon }_{\upalpha } { U}}{{V}_{\upalpha }}\int \limits _{{V}_\upalpha } {{{\tilde{c}}}_\upalpha \underline{\nabla }{\tilde{\phi }}_\upalpha { \hbox { d}V}} \right\} - a_{v} \quad \frac{\partial {\left\langle {q} \right\rangle }_{{\upalpha \upbeta }}}{\partial {t}} = 0,\\&\qquad O\left( \frac{{U \varepsilon }_\upalpha {\left\langle {{c}_{\upalpha }} \right\rangle }^{\upalpha } {\left\langle \phi \right\rangle }^{\upalpha }}{{L L}_{c}}\frac{{l}_\upalpha }{{L}}\right) , \quad O\left( \frac{{1}}{{l}_\upalpha }\frac{\partial {\left\langle {q} \right\rangle }_{{\upalpha \upbeta }}}{\partial {t}}\right) .\nonumber \end{aligned}$$
(32)

The order of magnitude for the deviation variables \({\tilde{c}}_{\upalpha } \) and \(\tilde{\phi }_{\upalpha } \) were obtained using Eqs. (23) and (36). We use \({g}_2 \approx O\left( {l}_\upalpha / \left( U{\left\langle {{c}_{\upalpha }} \right\rangle }^\upalpha \right) \right) \) estimated from Eq. (41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabitto, J., Tsouris, C. Volume Averaging Study of the Capacitive Deionization Process in Homogeneous Porous Media. Transp Porous Med 109, 61–80 (2015). https://doi.org/10.1007/s11242-015-0502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0502-0

Keywords

Navigation