Skip to main content
Log in

Upscaling for Adiabatic Solid–Fluid Reactions in Porous Medium Using a Volume Averaging Theory

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, an upscaling study of solid–fluid combustion in porous medium with homogeneous and heterogeneous heat sources is carried out using a volume averaging theory. For the sake of simplicity, the reaction rate is assumed to be of first-order Arrhenius type and convection is not taken into account. Local thermal non-equilibrium is considered between the solid and fluid phases. During the resolution of closure problems, periodic boundary condition is utilized in order to determine the effective coefficients in the upscaled model.The obtained macroscale theory is validated against direct numerical simulation results for two typical porous medium geometries made of simple unit cells, namely unconsolidated and consolidated porous media. The comparisons between the present upscaled and microscale results are conducted for various Damköhler numbers for both homogeneous and heterogeneous reaction cases. It has been found that, for the low Damköhler number cases, the temperature profiles generated from the derived upscaled model are in accordance with that of the microscale model. For the high Damköhler number cases, however, the macroscale model fails to predict the combustion front and temperature profile, which evidently suggests that the effects of neglected terms during the upscaling process should be re-examined carefully in further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(\mathbf {b}\) :

Closure variable (m)

\(\mathbf {C}\) :

Closure variable \((\hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1})\)

\(\mathbf {K}\) :

Effective thermal conductivity tensor \((\hbox {W}\,\hbox {m}^{-1} \,\hbox {K}^{-1})\)

\(\mathbf {n}\) :

Normal unit vector

\(\mathbf {u}\) :

Transport coefficient \((\hbox {J}\,\hbox {m}^{-2} \,\hbox {s}^{-1} \,\hbox {K}^{-1})\)

\(A_0\) :

Pre-exponential factor \((\hbox {s}^{-1})\)

\(a_V\) :

Specific surface \((\hbox {m}^{-1})\)

\(A_{{fm}}\) :

Surface area between the fluid and solid phases \((\hbox {m}^2)\)

\(c_p\) :

Specific heat capacity at constant pressure \((\hbox {J} \,\hbox {kg}^{-1} \, \hbox {K}^{-1})\)

\(E\) :

Activation energy \((\hbox {J} \,\hbox {mol}^{-1})\)

\(F\) :

Arbitrary function of Taylor series

\(H\) :

Heat of chemical reaction \((\hbox {J} \, \hbox {m}^{-3})\)

\(h\) :

Heat transfer coefficient \((\hbox {J} \,\hbox {m}^{-3} \,\hbox {s} ^{-1} \,\hbox {K}^{-1})\)

\(k\) :

Thermal conductivity \((\hbox {W} \,\hbox {m}^{-1} \,\hbox {K}^{-1})\)

\(L\) :

Macroscopic characteristic length \((\hbox {m})\)

\(l\) :

Microscopic characteristic length \((\hbox {m})\)

\(q_{rxn}\) :

Heat flux due to the chemical reaction \((\hbox {W} \,\hbox {m}^{-3})\)

\(R\) :

Universal gas constant \((\hbox {J} \,\hbox {mol}^{-1} \,\hbox {K}^{-1})\)

\(r\) :

Closure variable \((\hbox {K} \,\hbox {m}^2 \,\hbox {s}\,\hbox {J}^{-1})\)

\(s\) :

Closure variable \((\hbox {s})\)

\(T\) :

Temperature \((\hbox {K})\)

\(t\) :

Time \((\hbox {s})\)

\(V\) :

Unit cell volume \((\hbox {m}^3)\)

\(x, y\) :

Cartesian coordinates \((\hbox {m})\)

\(\epsilon \) :

Porosity \((-)\)

\(\rho \) :

Density \((\hbox {kg}\,\hbox {m}^{-3})\)

\(\tau \) :

Tortuosity \((-)\)

\(\xi \) :

Distribution coefficient \((-)\)

\(\zeta \) :

Arbitrary function for the closure problem

\(f\) :

Fluid phase

\(in\) :

Inlet

\(int\) :

Interface between the solid and fluid phases

\(m\) :

Solid phase

\(rxn\) :

Reaction

\(u\) :

Unit cell

\(f\) :

Fluid phase

\(m\) :

Solid phase

References

  • Akkutlu, I.Y., Yortsos, Y.C.: The effect of heterogeneity on in-situ combustion: the propagation of combustion fronts in layered porous media. SPE J. 54, 56–56 (2002)

    Google Scholar 

  • Aldushin, A., Rumanov, I., Matkowsky, B.: Maximal energy accumulation in a superadiabatic filtration combustion wave. Combust. Flame 118, 76–90 (1999)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  • Beeston, G., Essenhigh, R.H.: Kinetics of coal combustion: the influence of oxygen concentration on the burning-out times of single particles. J. Phys. Chem. 67, 1349–1355 (1963)

    Article  Google Scholar 

  • Bruining, J., Mailybaev, A.A., Marchesin, D.: Filtration combustion in wet porous medium. SIAM J. Appl. Math. 70, 1157–1177 (2009)

    Article  Google Scholar 

  • Clement, T.P., Hooker, B.S., Skeen, R.S.: Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth. Groundwater 34(5), 934–942 (1996)

    Article  Google Scholar 

  • Cushman, J.H., Bennethus, L.S., Hu, B.X.: A primer on upscaling tools for porous media. Adv. Water Resour. 25, 10431067 (2002)

    Article  Google Scholar 

  • Davarzani, H., Marcoux, M., Quintard, M.: Effect of solid thermal conductivity and particle–particle contact on effective thermodiffusion coefficient in porous media. Int. J. Thermal Sci. 50, 2328–2339 (2011)

    Article  Google Scholar 

  • David, C., Salvador, S., Dirion, J.L., Quintard, M.: Determination of a reaction scheme for cardboard thermal degradation using thermal gravimetric analysis. J. Anal. Appl. Pyrolysis 67, 307–323 (2003)

    Article  Google Scholar 

  • Davit Y., Quintard, M.: Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms, chapter in press in Handbook of Porous Media, 3rd edition, Ed. By K. Vafai, Taylor & Francis

  • Davit, Y., Debenest, G., Wood, B.D., Quintard, M.: Modeling non-equilibrium mass transport in biologically reactive porous media. Adv. Water Resour. 33, 1075–1093 (2010a)

    Article  Google Scholar 

  • Davit, Y., Quintard, M., Debenest, G.: Equivalence between volume averaging and moments matching techniques for mass transport in porous media. Int. J. Heat Mass Transf. 53, 4985–4993 (2010b)

    Article  Google Scholar 

  • Davit, Y., Wood, B.D., Debenest, G., Quintard, M.: Correspondence between one-and two-equation models for solute transport in two-region heterogeneous porous media. Transp. Porous Media 95, 213–228 (2012)

    Article  Google Scholar 

  • Debenest, G., Mourzenko, V.V., Thovert, J.F.: Smouldering in fixed beds of oil shale grains: governing parameters and global regimes. Combust. Theory Model. 9, 301–321 (2005)

    Article  Google Scholar 

  • Duval, F., Fichot, F., Quintard, M.: A local thermal non-equilibrium model for two-phase flows with phase-change in porous media. Int. J. Heat Mass Transf. 47, 613–639 (2004)

    Article  Google Scholar 

  • Eidsath, A., Carbonell, R.G., Whitaker, S., Herrmann, L.R.: Dispersion in pulsed systemsIII: comparison between theory and experiments for packed beds. Chem. Eng. Sci. 38, 1803–1816 (1983)

    Article  Google Scholar 

  • Fadaei H.: Etude de la récupération de bruts lourds en réservoir carbonaté fracturé par le procédé de combustion in situ, PhD Thesis, INP Toulouse (2009)

  • Golfier, F., Quintard, M., Cherblanc, F., Zinn, B.A., Wood, B.D.: Comparison of theory and experiment for solute transport in highly heterogeneous porous medium. Adv. Water Resour. 30, 2235–2261 (2007)

    Article  Google Scholar 

  • Gray, W.G.: A derivation of the equations for multi-phase transport. Chem. Eng. Sci. 30, 229–233 (1975)

    Article  Google Scholar 

  • Kaviany, M.: Principles of Convective Heat Transfer, Principles of Heat Transfer in Porous Media. Springer, New York (1991)

    Book  Google Scholar 

  • Kim, J.H., Ochoa, J.A., Whitaker, S.: Diffusion in anisotropic porous media. Transp. Porous Media 2, 327–356 (1987)

    Article  Google Scholar 

  • Lux, J.: A non-periodic closure scheme for the determination of effective diffusivity in real porous media. Transp. Porous Media 82, 299–315 (2010)

    Article  Google Scholar 

  • Marle, C.M.: Application de la mthode de la thermodynamique des processus irrversibles lcoulement dun fluide travers un milieux poreux. Bull. RILEM 29, 1066–1071 (1965)

    Google Scholar 

  • Marle, C.M.: Ecoulements monophasiques en milieu poreux. Revue de lInstitut Franaise du Pétrole 22, 14711509 (1967)

    Google Scholar 

  • Marle, C.M.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. Int. J. Eng. Sci. 20, 643–662 (1982)

    Article  Google Scholar 

  • Matheron, G.: Les Variables régionalisées et leur estimation. Masson, Paris (1965)

    Google Scholar 

  • Mls, J.: On the existence of the derivative of the volume average. Transp. Porous Media 2, 615–621 (1987)

    Google Scholar 

  • Moyne, C.: Two-Equation model for a diffusion process in porous media using the volume averaging method with an unsteady closure. Adv. Water Resour. 20, 63–76 (1997)

    Article  Google Scholar 

  • Moyne, C., Didierjean, S., Amaral Souto, H.P., Da Silveira, O.T.: Thermal dispersion in porous media: one-equation model. Int. J. Heat Mass Transf. 43, 3853–3867 (2000)

    Article  Google Scholar 

  • Mukasyan, A.S., Rogachev, A.S.: Discrete reaction waves: gasless combustion of solid powder mixtures. Prog. Energy Combust. Sci. 34, 377–416 (2008)

    Article  Google Scholar 

  • Nozad, I., Carbonell, R.G., Whitaker, S.: Heat conduction in multiphase systemsI: theory and experiment for two-phase systems. Chem. Eng. Sci. 40, 843–855 (1985)

    Article  Google Scholar 

  • Ochoa, J.A., Stroeve, P., Whitaker, S.: Diffusion and reaction in cellular media. Chem. Eng. Sci. 41, 2999–3013 (1986)

    Article  Google Scholar 

  • Prat, M.: On the boundary conditions at the macroscopic level. Transp. Porous Media 4, 259–280 (1989)

    Article  Google Scholar 

  • Puiroux, N., Prat, M., Quintard, M.: Non-equilibrium theories for macroscale heat transfer: ablative composite layer systems. Int. J. Thermal Sci. 43, 541–554 (2004)

    Article  Google Scholar 

  • Quintard, M.: Diffusion in isotropic and anisotropic porous systems: three-dimensional calculations. Transp. Porous Media 11, 187–199 (1993)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: One-and two-equation models for transient diffusion processes in two-phase systems. Adv. Heat Transf. 23, 369–464 (1993)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media I: the cellular average and the use of weighting functions. Transp. Porous Media 14, 163–177 (1994a)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media II: generalized volume averaging. Transp. Porous Media 14, 179–206 (1994b)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media III: closure and comparison between theory and experiment. Transp. Porous Media 15, 31–49 (1994c)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Theoretical analysis of transport in porous media. Handbook of Heat Transfer in Porous Media, pp. 1–52 (2000)

  • Quintard, M., Cherblanc, F., Whitaker, S.: Dispersion in heterogeneous porous media: one-equation non-equilibrium model. Transp. Porous Media 44, 181–203 (2001)

    Article  Google Scholar 

  • Quintard, M., Kaviany, M., Whitaker, S.: Two-medium treatment of heat transfer in porous media: numerical results for effective properties. Adv. Water Resour. 20, 77–94 (1997)

    Article  Google Scholar 

  • Quintard, M., Ladevie, B., Whitaker, S.: Effect of homogeneous and heterogeneous source terms on the macroscopic description of heat transfer in porous media. In: Symposium on Energy Engineering in the 21st Century 2, pp. 482–489 (2000)

  • Ryan, D.: Effective diffusivities in reactive porous media: a comparison between theory and experiments. Master’s Thesis, UC Davis (1983)

  • Ryan, D., Carbonell, R.G., Whitaker, S.: A theory of diffusion and reaction in porous media. AIChE Symp. Ser. 77, 46–62 (1981)

    Google Scholar 

  • Sanchez-Palencia, E.: Lecture Notes in Physics, vol 127: Nonhomogeneous Media and Vibration Theory. Springer, New York (1980)

    Google Scholar 

  • Sahraoui, M., Kaviany, M.: Direct simulation versus local, phase-volume averaged description of adiabatic premixed flame in a porous medium. Int. J. Heat Mass Transf. 37, 2817–2834 (1994)

    Article  Google Scholar 

  • Shapiro, M., Brenner, H.: Taylor dispersion of chemically reactive species: irreversible first-order reactions in bulk and on boundaries. Chem. Eng. Sci. 41, 1417–1433 (1986)

    Article  Google Scholar 

  • Shapiro, M., Brenner, H.: Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium. Chem. Eng. Sci. 43, 551–571 (1988)

    Article  Google Scholar 

  • Shonnard, D.R., Whitaker, S.: The effective thermal conductivity for a point-contact porous medium: an experimental study. Int. J. Heat Mass Transf. 32, 503–512 (1989)

    Article  Google Scholar 

  • Slattery, J.C.: Flow of viscoelastic fluids through porous media. AIChE J. 13, 1066–1071 (1967)

    Article  Google Scholar 

  • Valdés-Parada, F.J., Aguilar-Madera, C.G.: Upscaling mass transport with homogeneous and heterogeneous reaction in porous media. Chem. Eng. 24, 1453 (2011)

    Google Scholar 

  • Valdés-Parada, F.J., Alvarez-Ramirez, J.: On the effective diffusivity under chemical reaction in porous media. Chem. Eng. Sci. 65, 41004104 (2010)

    Article  Google Scholar 

  • Vandadi, V., Park, C., Kaviany, M.: Superadiabatic radiant porous burner with preheater and radiation corridors. Int. J. Heat Mass Transf. 64, 680–688 (2013)

    Article  Google Scholar 

  • Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13, 420427 (1967)

    Article  Google Scholar 

  • Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv. Heat Transf. 13, 119–203 (1977)

    Article  Google Scholar 

  • Whitaker, S.: Mass transport and reaction in catalyst pellets. Transp. Porous Media 2, 269–299 (1987)

    Google Scholar 

  • Whitaker, S.: The Method of Volume Averaging. Springer, New York (1999)

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to express the sincerest thanks to the financial support funded by ANR-11-BS009-005-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald Debenest.

Appendices

Appendix 1: Closure Problems

Here, we followed the same manipulations conducted by Quintard and Whitaker (1993) except that, in our upscaled equation, we have an extra reaction term for the solid phase. The closure variables, defined in Eqs. (27a) and (27b), are introduced in Eqs. (24) and (25) and for these equations to be satisfied at the leading order in terms of \({\left\langle T_{{m}}\right\rangle }^m\), \({\left\langle T_{{f}}\right\rangle }^f\), \(\nabla {\left\langle T_{{m}}\right\rangle }^m\) and \(\nabla {\left\langle T_{{f}}\right\rangle }^f\), they must satisfy the closure problems discussed below.

In the next step, we only need to determine these variables in some representative region in order to evaluate the terms in macroscopic equations that contain the spatial deviation variables. The first closure problem is associated with \(\nabla {\left\langle T_{{m}} \right\rangle }^m\) and takes the following form.

$$\begin{aligned} k_{{m}}\nabla ^2\mathbf {b}_{mm}=\epsilon ^{-1}_{{m}}\mathbf {C}_{mm} \quad \quad \quad \text {in the solid} \end{aligned}$$
(57)
$$\begin{aligned} \mathbf {b}_{mm}&=\mathbf {b}_{{fm}} \quad \quad \quad \text {at}\, A_{{fm}} \end{aligned}$$
(58a)
$$\begin{aligned} \mathbf {n}_{mf}\cdot k_{{m}} \nabla \mathbf {b}_{mm}&= \mathbf {n}_{mf}\cdot k_{{f}} \nabla \mathbf {b}_{{fm}}-\mathbf {n}_{mf}k_{{m}} \quad \quad \quad \text {at}\, A_{{fm}} \end{aligned}$$
(58b)
$$\begin{aligned} 0=k_{{f}}\nabla ^2\mathbf {b}_{{fm}}+\epsilon ^{-1}_{{f}}\mathbf {C}_{mm} \quad \quad \quad \text {in the fluid} \end{aligned}$$
(59)
$$\begin{aligned}&\text {Periodicity:} \quad \mathbf {b}_{{fm}} \left( \mathbf {r} + \ell _i\right) = \mathbf {b}_{{fm}} \left( \mathbf {r} \right) , \quad \quad \mathbf {b}_{mm} \left( \mathbf {r} + \ell _i\right) = \mathbf {b}_{mm} \left( \mathbf {r} \right) , \quad \quad i=1,2,3 \end{aligned}$$
(60a)
$$\begin{aligned}&\text {Average:} \quad {\left\langle \mathbf {b}_{{fm}} \right\rangle }^f=0, \quad \quad {\left\langle \mathbf {b}_{mm} \right\rangle }^m=0 \end{aligned}$$
(60b)

Here, \(\mathbf {C}_{mm}\) is the unknown integral represented by

$$\begin{aligned} \mathbf {C}_{mm}=\frac{1}{V}\int _{A_{mf}}\mathbf {n}_{mf}\cdot k_{{m}} \nabla \mathbf {b}_{mm} dA = \frac{1}{V}\int _{A_{mf}}\mathbf {n}_{mf}\cdot k_{{f}} \nabla \mathbf {b}_{{fm}} dA \end{aligned}$$
(61)

A detailed description of the evaluation of this unknown integral is given by Quintard et al. (1997).

The term \(\nabla {\left\langle T_{{f}} \right\rangle }^f\) is also a source in the closure problem for \(\widetilde{T}_{{m}}\) and \(\widetilde{T}_{{f}}\) . The boundary value problem associated with the closure variable for \(\nabla {\left\langle T_{{f}} \right\rangle }^f\) is given by

$$\begin{aligned} k_{{m}}\nabla ^2\mathbf {b}_{mf}=\epsilon ^{-1}_{{m}}\mathbf {C}_{mf} \quad \quad \quad \text {in the solid} \end{aligned}$$
(62)
$$\begin{aligned} \mathbf {b}_{mf}= & {} \mathbf {b}_{ff} \quad \quad \quad \text {at }A_{{fm}} \end{aligned}$$
(63a)
$$\begin{aligned} \mathbf {n}_{mf}\cdot k_{{m}} \nabla \mathbf {b}_{mf}= & {} \mathbf {n}_{mf}\cdot k_{{f}} \nabla \mathbf {b}_{ff}+\mathbf {n}_{mf}k_{{f}}\quad \quad \quad \text {at }A_{{fm}} \end{aligned}$$
(63b)
$$\begin{aligned} 0=k_{{f}}\nabla ^2\mathbf {b}_{ff}+\epsilon ^{-1}_{{f}}\mathbf {C}_{mf} \quad \quad \quad \text {in the fluid} \end{aligned}$$
(64)
$$\begin{aligned}&\text {Periodicity:} \quad \mathbf {b}_{ff} \left( \mathbf {r} + \ell _i\right) = \mathbf {b}_{ff} \left( \mathbf {r} \right) , \quad \quad \mathbf {b}_{mf} \left( \mathbf {r} + \ell _i\right) = \mathbf {b}_{mf} \left( \mathbf {r} \right) , \quad \quad i=1,2,3 \end{aligned}$$
(65a)
$$\begin{aligned}&\text {Average:} \quad {\left\langle \mathbf {b}_{ff} \right\rangle }^f=0, \quad \quad {\left\langle \mathbf {b}_{mf} \right\rangle }^m=0 \end{aligned}$$
(65b)

Here, \(\mathbf {C}_{mf}\) is the unknown integral represented by

$$\begin{aligned} \mathbf {C}_{mf}=\frac{1}{V}\int _{A_{mf}}\mathbf {n}_{mf}\cdot k_{{m}} \nabla \mathbf {b}_{mf} dA = \frac{1}{V}\int _{A_{mf}}\mathbf {n}_{mf}\cdot k_{{f}} \nabla \mathbf {b}_{ff} dA \end{aligned}$$
(66)

Moving on to the source represented by \(\left\langle T_{{f}}\right\rangle ^f-\left\langle T_{{m}}\right\rangle ^m\) in Eq. (26a), we construct the following boundary problem for the closure scalars \(s_{{m}}\) and \(s_{{f}}\).

$$\begin{aligned} 0=k_{{m}}\nabla ^2 s_{{m}}+\epsilon ^{-1}_{{m}}h \quad \quad \quad \text {in the solid} \end{aligned}$$
(67)
$$\begin{aligned} s_{{f}}=&s_{{m}} +1 \quad \quad \quad \text {at }A_{{fm}} \end{aligned}$$
(68a)
$$\begin{aligned} \mathbf {n}_{mf}\cdot k_{{m}} \nabla s_{{m}} =&\mathbf {n}_{mf}\cdot k_{{f}} \nabla s_{{f}} \quad \quad \quad \text {at }A_{{fm}} \end{aligned}$$
(68b)
$$\begin{aligned} 0=k_{{f}}\nabla ^2s_{{f}} - \epsilon ^{-1}_{{f}}h \quad \quad \quad \text {in the fluid} \end{aligned}$$
(69)
$$\begin{aligned}&\text {Periodicity:} \quad s_{{f}} \left( \mathbf {r} + \ell _i\right) = s_{{f}} \left( \mathbf {r} \right) , \quad \quad s_{{m}} \left( \mathbf {r} + \ell _i\right) = s_{{m}} \left( \mathbf {r} \right) , \quad \quad i=1,2,3 \end{aligned}$$
(70a)
$$\begin{aligned}&\text {Average:} \quad {\left\langle s_{{f}} \right\rangle }^f=0, \quad \quad {\left\langle s_{{m}} \right\rangle }^m=0 \end{aligned}$$
(70b)

In this closure problem, the undetermined constant is represented by

$$\begin{aligned} h=\frac{1}{V}\int _{A_{mf}}\mathbf {n}_{{fm}}\cdot k_{{m}} \nabla s_{{m}} dA = \frac{1}{V}\int _{A_{mf}}\mathbf {n}_{{fm}}\cdot k_{{f}} \nabla s_{{f}} dA \end{aligned}$$
(71)

Appendix 2: Large Conductivity Ratio Behavior of the Closure Problems

In this appendix, we are interested in the behavior of the closure problems in the limit of \(k_{{m}}/k_{{f}}\) (or \(k_{{f}}/k_{{m}} \)) going to infinity. The results are clear for the mapping variables and the distribution coefficient as illustrated in Fig. 7.

For the closure problem involving the mapping variable \(s_{{m}}\) and \(s_{{f}}\), we have by looking at the limit of Eqs. (67) through (71) when \(k_{{m}}/k_{{f}} \rightarrow +\infty \):

$$\begin{aligned} s_{{m}}=0 \end{aligned}$$
(72)

and

$$\begin{aligned} \frac{h l_{{f}}^{2}}{k_{{f}}} = constant \end{aligned}$$
(73)

Similarly, when \(k_{{f}}/k_{{m}} \rightarrow +\infty \), we have

$$\begin{aligned} s_{{f}}=0 \end{aligned}$$
(74)

and,

$$\begin{aligned} \frac{h l_{{f}}^{2}}{k_{{m}}} = \hbox {constant} \end{aligned}$$
(75)

This simply gives the obvious physical result that the heat transfer resistance is due to the less conductive material in these limiting cases.

For the closure problems involving the \(\mathbf {b}_{\alpha \beta }\) mapping variables, we can develop the following estimates. Eqs. (57) through (61) lead to in the limit \(k_{{m}}/k_{{f}} \rightarrow +\infty \):

$$\begin{aligned} \mathbf {b}_{mm}= & {} 0 \quad \quad \quad \quad \text {in }V_{{m}} \end{aligned}$$
(76)
$$\begin{aligned} \mathbf {n}_{mf}\cdot k_{{f}} \nabla \mathbf {b}_{mm}= & {} - \mathbf {n}_{mf} \quad \quad \text {at }A_{{fm}} \end{aligned}$$
(77)
$$\begin{aligned}&\text {Periodicity:} \quad \quad \mathbf {b}_{mm} \left( \mathbf {r} + \ell _i\right) = \mathbf {b}_{mm} \left( \mathbf {r} \right) , \quad \quad i=1,2,3 \end{aligned}$$
(78a)
$$\begin{aligned}&\text {Average:} \quad \quad {\left\langle \mathbf {b}_{mm} \right\rangle }^m=0 \end{aligned}$$
(78b)

which is the typical effective diffusion problem for the \(m\)-phase. Its solution gives for a percolating \(m\)-phase, and in the isotropic case:

$$\begin{aligned} \mathbf {K}_{mm} =\epsilon _{{m}} k_{{m}} \mathbf {I}+\frac{k_{{m}}}{V}\int _{A_{mf}}\mathbf {n}_{mf} \mathbf {b}_{mm}dA=\frac{\epsilon _{{m}} k_{{m}}}{\tau _{{m}}} \mathbf {I} \end{aligned}$$
(79)

where \(\tau _{{m}}\) is the tortuosity given by the solution of the closure problem over a representative unit cell.

Similarly, in the case \(k_{{f}}/k_{{m}} \rightarrow +\infty \), we obtain by looking at Eqs. (62) through (66)

$$\begin{aligned} \mathbf {K}_{ff}=\epsilon _{{f}} k_{{f}} \mathbf {I}+\frac{k_{{f}}}{V}\int _{A_{mf}}\mathbf {n}_{mf}\mathbf {b}_{ff}dA =\frac{\epsilon _{{f}} k_{{f}}}{\tau _{{f}}} \mathbf {I} \end{aligned}$$
(80)

where this time \(\tau _{{f}}\) is the calculated tortuosity of the percolating isotropic \(f\)-phase.

Appendix 3: Normalization of Governing Equations

In this appendix, the microscale and macroscale governing equations for both homogeneous and heterogeneous reactions presented in this paper are normalized. Firstly, the dimensionless governing equations for homogeneous reaction are written as:

$$\begin{aligned} \frac{\partial T^{*}_{{m}}}{\partial t^*}=\nabla ^2 T^{*}_{{m}}+\frac{Da}{E/RT_{\mathrm{in}}}e^{-\frac{E}{RT_{\mathrm{in}}} \left( \frac{1}{T^{*}_{{m}}}-1 \right) } \end{aligned}$$
(81)

and

$$\begin{aligned} \frac{\partial T^{*}_{{f}}}{\partial t^*}\frac{\left( \rho c_p \right) _{{f}}/k_{{f}}}{\left( \rho c_p \right) _{{m}}/k_{{m}}}=\nabla ^2 T^{*}_{{f}} \end{aligned}$$
(82)

The interfacial boundary condition is expressed by

$$\begin{aligned} T^*_{{m}}&=T^*_{{f}} \end{aligned}$$
(83a)
$$\begin{aligned} \mathbf {n}_{mf} \cdot \frac{k_{{m}}}{k_{{f}}} \nabla T^*_{{m}}&= \mathbf {n}_{mf} \cdot \nabla T^*_{{f}} \end{aligned}$$
(83b)

where

$$\begin{aligned} T^*_{{m}}=T_{{m}}/T_{\mathrm{in}}, \quad \quad T^*_{{f}}&=T_{{f}}/T_{\mathrm{in}}, \quad \quad t^*=t\left( k_{{m}}/\left( \rho c_p \right) _{{m}} \right) /L^{2}_{\mathrm{ref}} \end{aligned}$$
(84a)
$$\begin{aligned} Da&= \frac{H_{rxn}}{(\rho c_p)_{{m}}} \frac{E}{R T^2_{\mathrm{in}} } \frac{A_0 e^{-E/R T_{\mathrm{in}} } L^{2}_{\mathrm{ref}} }{k_{{m}}/(\rho c_p)_{{m}}} \end{aligned}$$
(84b)

The corresponding dimensionless macroscopic governing equations based on Eqs. (28) and (29) are written as:

$$\begin{aligned} \epsilon _{{m}}\frac{\partial \left\langle T^*_{{m}} \right\rangle ^m}{\partial t^*}= & {} \nabla \cdot \left( \mathbf {K}^*_{mm}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m+\mathbf {K}^*_{mf}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f\right) +\mathbf {u}^*_{mm}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m\nonumber \\&+\,\mathbf {u}^*_{mf}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f-h^*\left( {\left\langle T^*_{{m}} \right\rangle }^m-{\left\langle T^*_{{f}} \right\rangle }^f\right) \nonumber \\&+\,\epsilon _{{m}} \frac{Da}{E/RT_{\mathrm{in}}}e^{-\frac{E}{RT_{\mathrm{in}}}\left( \frac{1}{{\left\langle T^*_{{m}} \right\rangle }^m }-1 \right) } \end{aligned}$$
(85)
$$\begin{aligned} \epsilon _{{f}}\frac{\left( \rho c_p \right) _{{f}}/k_{{f}}}{\left( \rho c_p \right) _{{m}}/k_{{m}}}\frac{\partial \left\langle T^*_{{f}} \right\rangle ^f}{\partial t^*}= & {} \nabla \cdot \left( \mathbf {K}^*_{ff}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f+\mathbf {K}^*_{{fm}}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m\right) \nonumber \\&+\,\mathbf {u}^*_{{fm}}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m+\mathbf {u}^*_{ff}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f+h^*\frac{k_{{m}}}{k_{{f}}}\left( {\left\langle T^*_{{m}} \right\rangle }^m-{\left\langle T^*_{{f}} \right\rangle }^f\right) \nonumber \\ \end{aligned}$$
(86)

where

$$\begin{aligned} {\left\langle T^*_{{m}} \right\rangle }^m= & {} {\left\langle T_{{m}} \right\rangle }^m/T_{\mathrm{in}}, \quad {\left\langle T^*_{{f}} \right\rangle }^f={\left\langle T_{{f}} \right\rangle }^f/T_{\mathrm{in}}, \quad \mathbf {K}^*_{mm}=\mathbf {K}_{mm}/k_{{m}} \end{aligned}$$
(87a)
$$\begin{aligned} \mathbf {K}^*_{mf}= & {} \mathbf {K}_{mf}/k_{{m}}, \quad \mathbf {K}^*_{ff}=\mathbf {K}_{ff}/k_{{f}}, \quad \mathbf {K}^*_{{fm}}=\mathbf {K}_{{fm}}/k_{{f}} \end{aligned}$$
(87b)
$$\begin{aligned} \mathbf {u}^*_{mm}= & {} \mathbf {u}_{mm}L_{\mathrm{ref}}/k_{{m}}, \quad \mathbf {u}^*_{mf}=\mathbf {u}_{mf}L_{\mathrm{ref}}/k_{{m}}, \quad \mathbf {u}^*_{{fm}}=\mathbf {u}_{{fm}}L_{\mathrm{ref}}/k_{{f}} \end{aligned}$$
(87c)
$$\begin{aligned} \mathbf {u}^*_{ff}= & {} \mathbf {u}_{ff}L_{\mathrm{ref}}/k_{{f}}, \quad \quad \quad h^*=hL^2_{\mathrm{ref}}/k_{{m}} \end{aligned}$$
(87d)

Based on the parameters given in Eq. (84a), the dimensionless microscopic governing equations for heterogeneous reaction are obtained as follows:

$$\begin{aligned} \frac{\partial T^{*}_{{m}}}{\partial t^*}=\nabla ^2 T^{*}_{{m}} \quad \quad \quad \quad \text {in }V_{{m}} \end{aligned}$$
(88)

and

$$\begin{aligned} \frac{\partial T^{*}_{{f}}}{\partial t^*}\frac{\left( \rho c_p \right) _{{f}}/k_{{f}}}{\left( \rho c_p \right) _{{m}}/k_{{m}}}=\nabla ^2 T^{*}_{{f}} \quad \quad \quad \quad \text {in }V_{{f}} \end{aligned}$$
(89)

The adapted boundary conditions are written as

$$\begin{aligned} T^*_{{m}}&=T^*_{{f}} \quad \quad \quad \text {at }A_{{fm}} \end{aligned}$$
(90a)
$$\begin{aligned} \mathbf {n}_{{fm}} \cdot \frac{k_{{f}}}{k_{{m}}}\nabla T^*_{{f}}&= \mathbf {n}_{{fm}} \cdot \nabla T^*_{{m}}+ Da\frac{H_{rxn}}{\left( \rho c_p\right) _{{m}}T_{\mathrm{in}}}e^{-\frac{E}{RT_{\mathrm{in}}}\left( \frac{1}{T^{*}_{{m}}}-1 \right) }\quad \text {at }A_{{fm}} \end{aligned}$$
(90b)

where the Damköhler number for heterogeneous reaction in this paper is different with Eq. (84b) and defined as below

$$\begin{aligned} Da=\frac{A_0 e^{-E/R T_{\mathrm{in}} } L_{\mathrm{ref}} }{k_{{m}}/(\rho c_p)_{{m}}} \end{aligned}$$
(91)

Moreover, we can use Eqs. (87a)–(87d) to normalize Eqs. (55) and (56) and obtain the following dimensionless macroscopic governing equations:

$$\begin{aligned}&\epsilon _{{m}}\frac{\partial \left\langle T^*_{{m}} \right\rangle ^m}{\partial t^*}=\nabla \cdot \left( \mathbf {K}^*_{mm}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m+\mathbf {K}^*_{mf}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f\right) +\mathbf {u}^*_{mm}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m\nonumber \\&\quad +\,\mathbf {u}^*_{mf}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f-h^*\left( {\left\langle T^*_{{m}} \right\rangle }^m-{\left\langle T^*_{{f}} \right\rangle }^f\right) \nonumber \\&\quad +\,a_VL_{\mathrm{ref}}\xi _{{m}} \left( 1 + w^* \frac{E}{R T_{\mathrm{in}}\left( {\left\langle T^*_{{m}}\right\rangle }^m \right) ^2 } \right) Da\frac{H_{rxn}}{\left( \rho c_p\right) _{{m}}T_{\mathrm{in}}}e^{-\frac{E}{RT_{\mathrm{in}}}\left( \frac{1}{{\left\langle T^*_{{m}} \right\rangle }^m}-1 \right) } \end{aligned}$$
(92)
$$\begin{aligned}&\epsilon _{{f}}\frac{\left( \rho c_p \right) _{{f}}/k_{{f}}}{\left( \rho c_p \right) _{{m}}/k_{{m}}}\frac{\partial \left\langle T^*_{{f}} \right\rangle ^f}{\partial t^*}=\nabla \cdot \left( \mathbf {K}^*_{ff}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f+\mathbf {K}^*_{{fm}}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m\right) \nonumber \\&\quad +\,\mathbf {u}^*_{{fm}}\cdot \nabla {\left\langle T^*_{{m}} \right\rangle }^m+\mathbf {u}^*_{ff}\cdot \nabla {\left\langle T^*_{{f}} \right\rangle }^f+h^*\frac{k_{{m}}}{k_{{f}}}\left( {\left\langle T^*_{{m}} \right\rangle }^m-{\left\langle T^*_{{f}} \right\rangle }^f\right) \nonumber \\&\quad +\,a_VL_{\mathrm{ref}}\xi _{{f}} \left( 1 + w^* \frac{E}{R T_{\mathrm{in}}\left( {\left\langle T^*_{{m}}\right\rangle }^m \right) ^2 } \right) Da\frac{H_{rxn}}{\left( \rho c_p\right) _{{m}}T_{\mathrm{in}}}e^{-\frac{E}{RT_{\mathrm{in}}}\left( \frac{1}{{\left\langle T^*_{{m}} \right\rangle }^m}-1 \right) } \end{aligned}$$
(93)

where the spatial deviation dimensionless temperature of solid phase at the interface is given by

$$\begin{aligned}&w^*=w/T_{\mathrm{in}}\nonumber \\&\quad =\frac{ \frac{E}{RT_{\mathrm{in}}\left( \left\langle T^*_{{f}}\right\rangle ^f \right) ^2} e^{\frac{E}{RT_{\mathrm{in}}\left\langle T^*_{{f}}\right\rangle ^f}} \left( \left\langle T^*_{{m}}\right\rangle ^m - \left\langle T^*_{{f}}\right\rangle ^f \right) - \left( e^{\frac{E}{RT_{\mathrm{in}}\left\langle T^*_{{m}}\right\rangle ^m}} - e^{\frac{E}{RT_{\mathrm{in}}\left\langle T^*_{{f}}\right\rangle ^f}} \right) }{ \frac{E}{RT_{\mathrm{in}}\left( \left\langle T^*_{{m}}\right\rangle ^m \right) ^2} e^{\frac{E}{RT_{\mathrm{in}}\left\langle T^*_{{m}}\right\rangle ^m}} - \frac{E}{RT_{\mathrm{in}}\left( \left\langle T^*_{{f}}\right\rangle ^f \right) ^2} e^{\frac{E}{RT_{\mathrm{in}}\left\langle T^*_{{f}}\right\rangle ^f}}} \qquad \end{aligned}$$
(94)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Quintard, M. & Debenest, G. Upscaling for Adiabatic Solid–Fluid Reactions in Porous Medium Using a Volume Averaging Theory. Transp Porous Med 108, 497–529 (2015). https://doi.org/10.1007/s11242-015-0487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0487-8

Keywords

Navigation