Skip to main content

Advertisement

Log in

Anisotropy and Stress Dependence of Permeability in the Barnett Shale

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

An Erratum to this article was published on 12 May 2015

Abstract

We document vertical permeability of \(2.3 \times 10^{-21}\, \hbox {m}^{2}\) (2.3 nd) and horizontal permeability of \(9.5 \times 10^{-20}\, \hbox {m}^{2}\) (96.3 nd) in two Barnett Shale samples. The samples are composed predominantly of quartz, calcite, and clay; have a porosity and a total organic content of \(\sim \)4 % each; and have a thermal maturity of 1.9 % vitrinite reflectance. Both samples exhibit stress-dependent permeability when the confining pressure is increased from 10.3 to 41.4 MPa. We measure a permeability anisotropy, the ratio of the horizontal to the vertical permeability, of \(\sim \)40. We find that the permeability anisotropy does not vary with effective stress. Multiscale permeability, as demonstrated by pressure dissipation, is related to millimeter-scale stratigraphic variation. We attribute the permeability anisotropy to preferential flow along more permeable layers and attribute the stress dependence to pore closure. A determination of permeability anisotropy allows us to understand flow properties in horizontal and vertical directions and assists our understanding of upscaling. Characterization of stress dependency allows us to predict permeability evolution during production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Pressure-sensitivity factor (\(\hbox {Pa}^{-1}\))

\(\mu \) :

Gas viscosity (Pa s)

\(\phi \) :

Porosity of core plug

\(a\) :

Ratio of sample pore volume to volume of upstream reservoir

\(b\) :

Ratio of sample pore volume to volume of downstream reservoir

\(b_\mathrm{k}\) :

Klinkenberg’s gas slippage factor (Pa)

\(c\) :

Gas compressibility (\(\hbox {Pa}^{-1}\))

\(s\) :

Semilog slope of the differential pressure decay (at 90 % decay)

\(f (a, b)\) :

\((a +b + ab) - (1/3)(a+b + 0.4132 a\,b)^{2 }+ 0.0744 (a+b + 0.0578 a\, b)^{3}\)

\(k_\mathrm{a}\) :

Apparent gas permeability (\(\hbox {m}^{2}\))

\(k_{0}\) :

Apparent gas permeability at \(P_\mathrm{c} - P_\mathrm{p} = 0\) \((\hbox {m}^{2})\)

\(k_{\infty }\) :

Absolute (Klinkenberg’s corrected) permeability

\(k_{h}\) :

Horizontal permeability (\(\hbox {m}^{2}\))

\(k_{v}\) :

Vertical permeability (\(\hbox {m}^{2}\))

\(L\) :

Length of core plug (m)

\(P\) :

Pressure in sample (Pa)

\(P_{1}\) :

Upstream reservoir pressure (Pa)

\(P_{2}\) :

Downstream reservoir pressure (Pa)

\(P_\mathrm{c}\) :

Confining pressure (Pa)

\(P_\mathrm{D}\) :

Dimensionless pressure

\(P_\mathrm{p}\) :

Average pore pressure (Pa)

\(\varDelta P\) :

Differential (upstream – downstream) pressure at time t (Pa)

\(\varDelta P_{0}\) :

Initial differential pressure (Pa)

\(t\) :

Time elapsed (s)

\(x\) :

Distance along the sample (m)

References

  • Adams, A.L., Germaine, J.T., Flemings, P.B., Day-Stirrat, R.J.: Stress induced permeability anisotropy of resedimented Boston Blue Clay. Water Resour. Res. 49, 1–11 (2013). doi:10.1002/wrcr.20470

    Article  Google Scholar 

  • Armitage, P.J., Faulkner, D.R., Worden, R.H., Aplin, A.C., Butcher, A.R., Iliffe, J.: Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the \(\text{ CO }_{2}\) storage project at the Krechba Field, Algeria. J. Geophys. Res. Solid Earth 116, B12208 (2011). doi:10.1029/2011JB008385

    Article  Google Scholar 

  • Best, M.E., Katsube, T.J.: Shale permeability and its significance in hydrocarbon exploration. Lead. Edge 14, 165–170 (1995)

    Article  Google Scholar 

  • Brace, W.F., Walsh, J.B., Frangos, W.T.: Permeability of granite under high pressure. J. Geophys. Res. 73(6), 2225–2236 (1968). doi:10.1029/JB073i006p02225

    Article  Google Scholar 

  • Bustin, A.M., Bustin, R.M.: Importance of rock properties on the producibility of gas shales. Int. J. Coal Geol. 103, 132–147 (2012). doi:10.1016/j.coal.2012.04.012

    Article  Google Scholar 

  • Bustin, A.M., Cui, X., Ross, D.J.K., Pathi, V.S.M.: Impact of shale properties on pore structure and storage characteristics. SPE paper 119892 presented at the SPE Shale Gas Production Conference held in Fort Worth, Texas, 16–18 November 2008. doi:10.2118/119892-MS

  • Chalmers, G.R.L., Ross, D.J.K., Bustin, R.M.: Geological controls on matrix permeability of Devonian gas shales in the Horn River and Liard basins, northeastern British Columbia, Canada. Int. J. Coal Geol. 103, 120–131 (2012). doi:10.1016/j.coal.2012.05.006

    Article  Google Scholar 

  • Clarkson, C.R.: Production data analysis of unconventional gas wells: review of theory and best practices. Int. J. Coal Geol. 109–110, 101–146 (2013). doi:10.1016/j.coal.2013.01.002

    Article  Google Scholar 

  • Clarkson, C.R., Nobakht, M., Kaviani, D., Ertekin, T.: Production analysis of tight-gas and shale-gas reservoirs using the dynamic-slippage concept. SPE J. 17(1), 230–242 (2012)

    Article  Google Scholar 

  • Clennell, M.B., Dewhurst, D.N., Brown, K.M., Westbrook, G.K.: Permeability anisotropy of consolidated clays. Geol. Soc. Lond. Spec. Publ. 158(1), 79–96 (1999). doi:10.1144/gsl.sp.1999.158.01.07

    Article  Google Scholar 

  • Comisky, J.T., Santiago, M., McCollom, B., Buddhala, A., Newsham, K. E.: Sample size effects on the application of Mercruy Intrusion Capillary Pressure for determining the storage capacity of tight gas and oil shales. CSUG/SPE paper 149432 presented at the Canadian Unconventional Resources Conference held in Calgary, Alberta, 15–17 November 2011. doi:10.2118/149432-MS

  • Cui, X., Bustin, A.M.M., Bustin, R.M.: Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids 9(3), 208–223 (2009). doi:10.1111/j.1468-8123.2009.00244.x

    Article  Google Scholar 

  • Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., Rai, C.S.: Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull. 96(4), 665–677 (2012). doi:10.1306/08151110188

    Article  Google Scholar 

  • Daigle, H., Dugan, B.: Permeability anisotropy and fabric development: a mechanistic explanation. Water Resour. Res. 47(12), W12517 (2011). doi:10.1029/2011WR011110

    Article  Google Scholar 

  • Dicker, A.I., Smits, R.M.: A practical method for determining permeability from laboratory pressure-pulse decay measurements. SPE paper 17578 presented at the International Meeting on Petroleum Engineering held in Tianjin, China, 1–4 November 1988

  • EIA (U.S. Energy Information Administration): Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States, pp. 730 (2013)

  • Gale, J., Holder, J.: Natural fractures in some U.S. shales and their importance for gas production. Geological Society of London, Petroleum Geology Conference, Series 7, 1131–1140 (2010). doi:10.1144/0071131

  • Gale, J., Reed, R.M., Holder, J.: Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 91(4), 603–622 (2007). doi:10.1306/11010606061

    Article  Google Scholar 

  • Ghanizadeh, A., Gasparik, M., Amann-Hildenbrand, A., Gensterblum, Y., Krooss, B.M.: Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: I. Scandinavian alum shale. Mar. Pet. Geol. 51, 79–99 (2014a). doi:10.1016/j.marpetgeo.2013.10.013

    Article  Google Scholar 

  • Ghanizadeh, A., Amann-Hildenbrand, A., Gasparik, M., Gensterblum, Y., Krooss, B.M., Littke, R.: Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: II. Posidonia Shale (Lower Toarcian, northern Germany). Int. J. Coal Geol. 123, 20–33 (2014b). doi:10.1016/j.coal.2013.06.009

    Article  Google Scholar 

  • Handwerger, D.A., Keller, J., Vaughn, K.: Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples. SPE paper 47456 presented at the SPE Annual Technical Conference and Exhibition held in Denver, Colorado, USA, 30 October–2 November 2011. doi:10.2118/147456-MS

  • Heid, J.G., McMahon, J.J., Nielsen, R.F., Yuster, S.T.: Study of the Permeability of Rocks to Homogenous Fluids, pp. 230–246. API Drilling & Production Practice, New York (1950)

    Google Scholar 

  • Heller, R.: Multiscale Investigation of Fluid Transport in Gas Shales. PhD Thesis, Stanford University, Palo Alto, California, USA, pp. 182 (2013)

  • Heller, R., Vermylen, J., Zoback, M.: Experimental investigation of matrix permeability of gas shales. AAPG Bull. 98(5), 975–995 (2014). doi:10.1306/09231313023

    Article  Google Scholar 

  • Hickey, J.J., Henk, B.: Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas. AAPG Bull. 91(4), 437–443 (2007). doi:10.1306/12040606053

    Article  Google Scholar 

  • Hinkley, R., Gu, Z., Wong, T., Camilleri, D.: Multi-porosity simulation of unconventional reservoirs. SPE 167146 paper presented at the SPE Unconventional Resources Conference Canada held in Calgary, Alberta, Canada, 5–7 November 2013. doi:10.2118/167146-MS

  • Hsieh, P.A., Tracy, J.V., Neuzil, C.E., Bredehoeft, J.D., Silliman, S.E.: A transient laboratory method for determining the hydraulic properties of tight rocks. 1. Theory. Int. J. Rock Mech. Min. Sci. 18(3), 245–252 (1981). doi:10.1016/0148-9062(81)90979-7

    Article  Google Scholar 

  • Jones, S.C.: A technique for faster pulse-decay permeability measurements in tight rocks. SPE Form. Eval. 12(1), 19–26 (1997). doi:10.2118/28450-PA. SPE 28450

    Article  Google Scholar 

  • Jones, F.O., Owens, W.W.: A laboratory study of low permeability gas sands. SPE 7551. In: Presented at the 1979 SPE Symposium on Low-Permeability Gas Reservoirs, Denver, May 20–22 (1979)

  • Kamath, J., Boyer, R.E., Nakagawa, F.M.: Characterization of core-scale heterogeneities using laboratory pressure transients. SPE Form. Eval. 7(3), 219–227 (1992). SPE 20575

    Article  Google Scholar 

  • Kang, S.M., Fathi, E., Ambrose, R.J., Akkutlu, I.Y., Sigal, R.F.: Carbon dioxide storage capacity of organic-rich shales. SPE J. 16(4), 842–855 (2011). doi:10.2118/134583-PA. SPE 134583

    Article  Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquids and gases. Paper preseneted at the API 11th mid year meeting, Tulsa, Oklahoma, May 1941; in Drilling and Production Practice, pp. 200–213 (1941)

  • Kwon, O., Kronenberg, A.K., Gangi, A.F., Johnson, B., Herbert, B.E.: Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading. J. Geophys. Res. 109, B10205 (2004). doi:10.1029/2004jb003052

    Article  Google Scholar 

  • Loucks, R.G., Reed, R.M., Ruppel, S.C., Hammes, U.: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 96(6), 1071–1098 (2012). doi:10.1306/08171111061

    Article  Google Scholar 

  • Loucks, R.G., Reed, R.M., Ruppel, S.C., Jarvie, D.M.: Morphology, genesis, and distribution of nanometer scale pores in siliceous mudstones of the Mississipian Barnett shale. J. Sediment. Res. 79(12), 848–861 (2009)

    Article  Google Scholar 

  • Loucks, R.G., Ruppel, S.C.: Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale gas succession in the Fort Worth Basin, Texas. AAPG Bull. 91(4), 579–601 (2007)

    Article  Google Scholar 

  • Luffel, D.L., Hopkins, C.W., Holditch, S.A., Schetter, P.D.: Matrix permeability measurement of gas productive shales. SPE Annual Technical Conference and Exhibition, Houston, Texas. SPE 26633, 261–270 (1993). doi:10.2118/26633-MS

  • Mckernan, R.E., Rutter, E.H., Mecklenburgh, J., Taylor, K.G., Covey-Crump, S.J.: Influence of effective pressure on mudstone matrix permability: implications for shale gas production. SPE paper 167762 presented at the SPE/EAGE European Unconventional Conference and Exhibition held in Vienna, Austria, 25–27 February 2014

  • Metwally, Y.M., Sondergeld, C.H.: Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. Int. J. Rock Mech. Min. Sci. 48(7), 1135–1144 (2011). doi:10.1016/j.ijrmms.2011.08.004

    Article  Google Scholar 

  • Milliken, K.L., Esch, W.L., Reed, R.M., Zhang, T.W.: Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bull. 96(8), 1553–1578 (2012). doi:10.1306/12011111129

    Article  Google Scholar 

  • Ning, X.: The Measurement of Matrix and Fracture Properties in Naturally Fractured Low Permeability Cores using a Pressure Pulse Method. PhD Thesis, Texas A&M University, College Station, Texas, USA, pp. 204 (1992)

  • Ning, X., Fan, J., Holditch, S.A., Lee, W.J.: The measurement of matrix and fracture properties in naturally fractured cores. SPE paper 25898 presented at the Low Permeability Reservoirs Symposium held in Denver, Colorado, 26–28 April 1993. doi:10.2118/25898-MS

  • NIST (National Institute of Standards and Technology) http://webbook.nist.gov/chemistry/fluid/ (2014)

  • Pathi, V.S.M.: Factors Affecting the Permeability of Gas Shales. Master’s Thesis, University of British Columbia, Vancouver, Canada, pp. 189 (2008)

  • Patzek, T.W., Male, F., Marder, M.: Gas production in the Barnett Shale obeys a simple scaling theory. Proc. Natl. Acad. Sci. 110(49), 19731–19736 (2013). doi:10.1073/pnas.1313380110

    Article  Google Scholar 

  • Silin, D.B., Kneafsey, T.J.: Gas shale: from nanometer-scale observations to well modeling. SPE paper 149489 presented at the Canadian Unconventional Resources Conference held in Alberta, Canada, 15–17 November 2011. doi:10.2118/149489-MS

  • Soeder, D.J.: Porosity and permeability of Eastern Devonian gas shale. SPE Form. Eval. 3(1), 116–124 (1988). doi:10.2118/15213-PA. SPE Paper 15213

    Article  Google Scholar 

  • Stegent, N.A., Ingram, S.R., Callard, J.G.: Hydraulic fracture stimulation design considerations and production analysis. SPE paper 139981 presented at the SPE Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, USA, 24–26 January 2011. doi:10.2118/139981-MS

  • Suarez-Rivera, R., Chertov, M., Willberg, D.M., Green, S.J., Keller, J.: Understanding permeability measurements in tight shales promotes enhanced determination of reservoir quality. SPE paper 162816 presented at the SPE Canadian Unconventional Resources Conference held in Calgary, Alberta, Canada, 30 October–1 November 2012. doi:10.2118/162816-MS

  • Tinni, A., Fathi, E., Agarwal, R., Sondergeld, C., Akkutlu, Y., Rai, C.: Shale permeability measurements on plugs and crushed samples. SPE paper 162235 presented at the SPE Canadian Unconventional Resources Conference held in Calgary, Alberta, Canada, 30 October–1 November 2012. doi:10.2118/162235-MS

  • Vega, B., Dutta, A., Kovscek, A.: CT imaging of low-permeability, dual-porosity systems using high X-ray constrast gas. Transp. Porous Med. 101, 81–97 (2014). doi:10.1007/s11242-013-0232-0

    Article  Google Scholar 

  • Vermylen, J.P.: Geomechanical Studies of the Barnett Shale, Texas, USA. PhD Thesis, Stanford University, Palo Alto, California, pp. 143 (2011)

  • Waters, G.A., Dean, B.K., Downie, R.C., Kerrihard, K.J., Austbo, L., McPherson, B.: Simultaneous hydraulic fracturing of adjacent horizontal wells in the Woodford Shale. SPE paper 119635 presented at the SPE Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, 19–21 January 2009. doi:10.2118/119635-MS

  • Witt, K.-J., Brauns, J.: Permeability–anisotropy due to particle shape. J. Geotech. Eng. 109(9), 1181–1187 (1983)

    Article  Google Scholar 

  • Yang, Y.L., Aplin, A.C.: Permeability and petrophysical properties of 30 natural mudstones. J. Geophys. Res. Solid Earth 112, B03206 (2007). doi:10.1029/2005JB004243

    Google Scholar 

  • Ziarani, A.S., Aguilera, R.: Knudsen’s permeability correction for tight porous media. Transp. Porous Med. 91, 239–260 (2012). doi:10.1007/s11242-011-9842-6

    Article  Google Scholar 

Download references

Acknowledgments

This research project is funded by Shell under the Shell–UT Unconventional Research (SUTUR) program. We thank Julia Reece for her help during the early stages of this research, Patrick Smith for taking the backscattered electron images, and Jessica Maisano for taking the microscale X-ray computed tomography images. Publication authorized by the Director of the Bureau of Economic Geology, The University of Texas at Austin\(^{\mathrm{TM}}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athma R. Bhandari.

Additional information

Steven L. Bryant was formerly in Department of Petroleum and Geosystems Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A.R., Flemings, P.B., Polito, P.J. et al. Anisotropy and Stress Dependence of Permeability in the Barnett Shale. Transp Porous Med 108, 393–411 (2015). https://doi.org/10.1007/s11242-015-0482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0482-0

Keywords

Navigation