Skip to main content
Log in

The Effects of Double Diffusion and Local Thermal Non-equilibrium on the Onset of Convection in a Layered Porous Medium: Non-oscillatory Instability

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effect of local thermal non-equilibrium on the onset of double-diffusive convection in a porous medium consisting of two horizontal layers is studied analytically. Linear stability theory is applied. Variations of permeability, fluid conductivity, solutal diffusivity, solid conductivity, interphase heat transfer coefficient, and porosity are considered. It is found that with the introduction of double diffusion, the heterogeneity of porosity now has a major effect, comparable to the effects of heterogeneity of permeability and fluid conductivity. The general results are obtained by using a one-term Galerkin approximation. We validate this approximation by comparing these results with those obtained by using a highly accurate numerical solver. We thus established the accuracy of a one-term Galerkin approximation for stability analysis of a complicated convection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(a \) :

Dimensionless horizontal wavenumber

D :

d/dz

\(D_{S}\) :

Solutal diffusivity

\(C\) :

Dimensionless concentration, \(\frac{C^{*}-C_0 }{\Delta C}\)

\(C^{*}\) :

Concentration

\(C_{0}\) :

Concentration at the upper boundary

\(h\) :

Interphase heat transfer coefficient (incorporating the specific surface area) between the fluid and solid particles

\(\hat{{h}}\) :

Parameter defined in Eq. (17)

\(h_{r}\) :

Interphase heat transfer coefficient ratio, \(h_{2}/h_{1}\)

\(g\) :

Gravitational acceleration

g :

Gravitational acceleration vector

\(H\) :

Dimensional layer depth

\(k\) :

Thermal conductivity of the porous medium

\(\hat{{k}}_f \) :

Parameter defined in Eq. (17)

\(k_{fr}\) :

Conductivity ratio for the fluid, \(k_{f2}/k_{f1}\)

\(\hat{{k}}_s \) :

Parameter defined in Eq. (17)

\(k_{sr}\) :

Conductivity ratio for the solid, \(k_{s2}/k_{s1}\)

\(K \) :

Permeability of the porous medium

\(K_{r}\) :

Permeability ratio, \(K_{2}/K_{1}\)

\(\hat{{K}}\) :

Parameter defined in Eq. (17)

Le:

Lewis number, \(\frac{k_{f1} }{(\rho c)_f D_S }\)

\(N\) :

Interphase heat transfer parameter, \(\frac{h_1 H^{2}}{\phi _1 k_{f1} }\)

\(N_{G}\) :

Number of terms in Galerkin approximation

\(P \) :

Dimensionless pressure, \(\frac{(\rho c)_f K_1 }{\mu k_{f1} }P^{*}\)

\(P^{*}\) :

Pressure, excess over hydrostatic

Ra:

Thermal Rayleigh number, \(\frac{\rho _0 g\beta K_1 H\Delta T}{\mu k_{f1} /(\rho c)_f }\)

\(\hbox {Ra}_\mathrm{D}\) :

Solutal Rayleigh number, \(\frac{\rho _0 g\beta _S K_1 H\Delta C}{\mu D_S }\)

\(t\) :

Dimensionless time,\(\frac{k_{f1} }{(\rho c)_f H^{2}}t^{*}\)

\(t^{*} \) :

Time

\(T\) :

Dimensionless temperature, \(\frac{T^{*}-T_0 }{\Delta T}\)

\(T^{*}\) :

Temperature

\(T_{0 }\) :

Temperature at the upper boundary

\((u,v,w)\) :

Dimensionless velocity components, \(\frac{(\rho c)_f H}{k_{f1} }(u^{*},v^{*},w^{*})\)

\(\mathbf{u}^{*}\) :

Darcy velocity, \((u^{*},v^{*},w^{*})\)

\((x,y,z)\) :

Dimensionless Cartesian coordinates, \((x^{*},y^{*},z^{*})/H\); \(z \) is the vertically upward coordinate

\((x^{*},y^{*},z^{*})\) :

Cartesian coordinates

\(\alpha \) :

Modified thermal diffusivity ratio, \(\frac{(\rho c)_{s1}}{(\rho c)_{f1} }\frac{k_{f1} }{k_{s1} }\)

\(\beta \) :

Volumetric thermal expansion coefficient of the fluid

\(\beta _{S}\) :

Volumetric solutal expansion coefficient of the fluid

\(\gamma \) :

Modified thermal conductivity ratio, \(\frac{\phi _1 k_{f1} }{(1-\phi _1 )k_{s1} }\)

\(\delta \) :

Dimensionless layer depth ratio (interface position)

\(\hat{{\delta }}\) :

Parameter defined in Eq. (17)

\(\delta _{r}\) :

Inverse solid fraction ratio,\(\frac{1-\phi _1}{1-\phi _2 }\)

\(\Delta C\) :

Concentration difference

\(\Delta T\) :

Temperature difference

\(\varepsilon \) :

Dimensionless small quantity

\(\hat{{\varepsilon }}\) :

Parameter defined in Eq. (17)

\(\varepsilon _r\) :

Solid heat capacity ratio, \(\frac{(\rho c)_{s2}}{(\rho c)_{s1} }\)

\(\mu \) :

Viscosity of the fluid

\(\rho _{0 }\) :

Fluid density at temperature \(T_{0}\)

\(\rho _{f}\) :

Fluid density

\(\left( {\rho c} \right) _f \) :

Heat capacity of the fluid

\(\left( {\rho c} \right) _m \) :

Effective heat capacity of the porous medium

\((\rho c)_s \) :

Heat capacity of the solid

\(\phi \) :

Porosity

\(\phi _{r}\) :

Porosity ratio, \(\phi _{2}\)/\(\phi _{1}\)

\(\hat{{\phi }}\) :

Parameter defined in Eq. (17)

\(B \) :

Basic state

\(c\) :

Critical value

\(f \) :

Fluid phase

\(m\) :

Effective property for the porous medium

\(r \) :

Relative quantity

\(s \) :

Solid phase

\(S\) :

Solute

1:

The region \(0\le z^{*}<\delta H\)

2:

The region \(\delta H\le z^{*}\le H\)

\(^{\prime }\) :

Perturbation variable

\(*\) :

Dimensional variable

References

  • Barletta, A., Storesletten, L.: Thermoconvective instabilities in an inclined porous channel heated from below. Int. J. Heat Mass Transf. 54, 2724–2733 (2011)

    Article  Google Scholar 

  • Nield, D.A.: Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Media 1, 181–186 (1998)

    Google Scholar 

  • Nield, D.A.: A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transp. Porous Media 95, 581–584 (2012)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Local thermal non-equilibrium and heterogeneity effects on the onset of convection in a layered porous medium. Transp. Porous Media 102, 1–13 (2014)

    Article  Google Scholar 

  • Platten, J.K., Legros, J.C.: Convection in Liquids. Springer, Berlin (1984)

    Book  Google Scholar 

  • Postelnicu, A., Rees, D.A.S.: The onset of Darcy-Brinkman convection in a porous layer using a thermal nonequilibrium model—Part I: Stress free boundaries. Int. J. Energy Res. 27, 961–973 (2003)

    Article  Google Scholar 

  • Rees, D.A.S., Bassom, A.P.: The onset of Darcy–Bénard convection in an inclined layer heated from below. Acta Mech. 144, 103–118 (2000)

    Article  Google Scholar 

  • Straughan, B.: Stability and Wave Motion in Porous Media. Springer-Verlag, New York (2008)

    Google Scholar 

  • Vadasz, P.: Heat conduction in nanofluid suspensions. ASME J. Heat Transf. 128, 465–477 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

AVK gratefully acknowledges the support of the Alexander von Humboldt Foundation though the Humboldt Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nield, D.A., Kuznetsov, A.V., Barletta, A. et al. The Effects of Double Diffusion and Local Thermal Non-equilibrium on the Onset of Convection in a Layered Porous Medium: Non-oscillatory Instability. Transp Porous Med 107, 261–279 (2015). https://doi.org/10.1007/s11242-014-0436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0436-y

Keywords

Navigation