Skip to main content
Log in

A New Experimental Method to Determine the Evaporation Coefficient of Trichloroethylene (TCE) in an Arid Soil

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents a new method to determine the evaporation coefficient of trichloroethylene using a new experimental device called “activity-meter”. This device and the associated method have been developed in the Laboratory of Mechanical Engineering of the University of Montpellier 2 (France). The influence of diffusion on the vapor pressure of trichloroethylene and the influence of temperature at the liquid–gas interface were first determined. The results show that diffusion phenomena have no influence on the vapor pressure of trichloroethylene beyond 400 s of experimental time and the temperature is almost constant during experiments. Thus, in order to take into account the effects that are only due to the variation of partial pressure of trichloroethylene at the liquid–gas interface, the time interval used is between 400 s and the time required to reach equilibrium. The influence of pressure and temperature on the evaporation coefficient of pure trichloroethylene in an arid soil was then highlighted. The results show that the evaporation coefficient of trichloroethylene decreases with total vapor pressure but increases with temperature. A comparative study on evaporation coefficients conducted on water, heptane, and trichloroethylene shows that our results are in good agreement with results on volatility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(C_\mathrm{p} \) :

Constant pressure specific heat (\(\hbox {J kg}^{-1}\,\hbox {K}^{-1}\))

\(D_\mathrm{va} \) :

Diffusion coefficient of TCE vapor in air (\(\hbox {m}^{2}\,\mathrm{s}^{-1}\))

\(h_1 \) :

Length of the sample (m)

\(h_2 \) :

Diffusion length (m)

\(J\) :

Evaporation flux (\(\hbox {kg m}^{-3}\,\hbox {s}^{-1}\))

\(L\) :

Evaporation coefficient of TCE (\(\hbox {kg K s}\,\hbox {m}^{-5}\))

\(L_\mathrm{v} \) :

Latent heat of vaporization (\(\hbox {J kg}^{-1}\))

\(M_\mathrm{a} \) :

Molar weight of air (\(\hbox {kg mol}^{-1}\))

\(m_\mathrm{a} \) :

Mass of air (kg)

\(M_\mathrm{v} \) :

Molar weight of vapor (\(\hbox {kg mol}^{-1}\))

\(m_\mathrm{v}^1 \) :

Mass of the vapor in compartment 1 (kg)

\(m_\mathrm{v}^2 \) :

Mass of the vapor in compartment 2 (kg)

\(n_\mathrm{a} \) :

Mole number of dry air (mol)

\(P_\mathrm{a} \) :

Air pressure (Pa)

\(P_\mathrm{Heq} \) :

Equilibrium partial pressure of heptane (Pa)

\(P_\mathrm{g} \) :

Total pressure of gas (Pa)

\(P_\mathrm{Taver} \) :

Average partial vapor pressure of TCE measured by the pressure sensor (Pa)

\(P_\mathrm{Teq} \) :

Equilibrium partial pressure of TCE (Pa)

\(P_\mathrm{Tsurf} \) :

Simulated vapor pressure of TCE (Pa)

\(P_\mathrm{v} \) :

Vapor pressure (Pa)

\(P_\mathrm{veq} \) :

Equilibrium vapor pressure (Pa)

\(P_\mathrm{vini} \) :

Initial vapor pressure (Pa)

\(P_\mathrm{weq} \) :

Equilibrium partial pressure of water (Pa)

\(R\) :

Ideal gas constant (\(\hbox {J K}^{-1 }\hbox {mol}^{-1}\))

\(S\) :

Surface of the sample (\(\hbox {m}^{2}\))

\(T\) :

Temperature of the system (K)

\(T_0 \) :

Initial temperature (K)

\(V\) :

Total gas phase volume (\(\hbox {m}^{3}\))

\(V_0 \) :

Gas phase volume in the initial equilibrium position (\(\hbox {m}^{3}\))

\(V_1 \) :

Volume of compartment 1 (\(\hbox {m}^{3}\))

\(\lambda \) :

Thermal conductivity (\(\hbox {W K}^{-1}\,\hbox {m}^{-1}\))

\(\phi _\mathrm{g} \) :

Volume fraction of gas

\(\rho _\mathrm{v} \) :

Apparent density of vapor (\(\hbox {kg m}^{-3}\))

\(\rho _\mathrm{v}^*\) :

Real density of vapor (\(\hbox {kg m}^{-3}\))

References

  • Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., Piringer, O.G.: Henry’s Law constant for a diverse set of organic chemicals: experimental determination and comparison of estimation methods. Chemosphere 39, 1871–1887 (1999)

    Article  Google Scholar 

  • Auriault, J.L., Lewandowska, J.: Effective diffusion coefficient: from homogenization to experiment. Transp. Porous Media 27, 205–223 (1997)

    Article  Google Scholar 

  • Bénet, J.C., Cousin, B., Cherblanc, F., Ouoba, S.: Device for measuring the activity of a liquid in a complex medium and associated method. United States Patent Application Publication, Pub. no US 20120266663A1 (2012)

  • Bénet, J.C., Lozano, A.L., Cherblanc, F., Cousin, B.: Phase change of water in a hygroscopic porous medium. Phenomenological relation and experimental analysis for water in soil. J. Non-Equilib. Thermodyn. 34, 97–117 (2009)

    Article  Google Scholar 

  • Benker, E., Davis, G.B., Barry, D.A.: Estimating the retardation coefficient of trichloroethene for a sand aquifer low in sediment organic carbon—a comparison of methods. J. Contam. Hydrol. 30, 157–178 (1998)

  • Braida, W., Ong, S.K.: Influence of porous media and airflow rate on the fate of NAPLs under air sparging. Transp. Porous Media 38, 29–42 (2000)

    Article  Google Scholar 

  • Brockbank, S.A., Russon, J.L., Giles, N.F., Rowley, R.L., Wilding, W.V.: Infinite dilution activity coefficients and Henry’s law constants of compounds in water using the inert gas stripping method. Fluid Phase Equilib. 348, 45–51 (2013)

    Article  Google Scholar 

  • Caron, F., Manni, G., Workman, W.J.G.: A large-scale laboratory experiment to determine the mass transfer of \(\text{ CO }_{2}\) from a sandy soil to moving groundwater. J. Geochem. Explor. 64, 111–125 (1998)

    Article  Google Scholar 

  • Chammari, A., Naon, B., Cherblanc, F., Bénet, J.-C.: Transfert d’eau en sol aride avec changement de phase. Comptes Rendus Mécanique 331, 759–765 (2003)

    Article  Google Scholar 

  • Dewulf, J., Langenhove, H.V., Everaert, P.: Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques. J. Chromatogr. A 830, 353–363 (1999)

    Article  Google Scholar 

  • Ficher, U., Hinz, C., Schulin, R., Stauffer, F.: Assessment of nonequilibrium in gas–water mass transfer during advective gas-phase transport in soils. J. Contam. Hydrol. 33, 133–148 (1998)

    Article  Google Scholar 

  • Gerolymatou, E., Vardoulakis, I., Hilfer, R.: Simulating the saturation front using fractional diffusion model. In: Fifth GRACM International Congress on Computational Mechanics, Limassol (2005)

  • Hoeg, S., Schöler, H.F., Warnatz, J.: Assessment of interfacial mass transfer in water-unsaturated soils during vapour extraction. J. Contam. Hydrol. 74, 163–195 (2004)

    Article  Google Scholar 

  • Hornbuckle, K.C., Jeremiason, J.D., Sweet, C.W., Eisenreich, S.J.: Seasonal variations in air–water exchange of polychlorinated biphenyls in Lake Superior. Environ. Sci. Technol. 28, 1491–1501 (1994)

    Article  Google Scholar 

  • Kish, J.D., Leng, C., Kelley, J., Hiltner, J., Zhang, Y., Liu, Y.: An improved approach for measuring Henry’s law coefficients of atmospheric organics. Atmos. Environ. 79, 561–565 (2013)

    Article  Google Scholar 

  • Lin, T.-F., Little, J.C., Nazaroff, W.W.: Transport and sorption of volatile organic compounds and water vapor within dry soil grains. Environ. Sci. Technol. 28, 322–330 (1994)

    Article  Google Scholar 

  • Lincoff, A.H., Gossett, J.M.: The determination of Henry’s constant for volatile organics by equilibrium partitioning in closed systems. In: Brutsaert, W., Jirka, G.H. (eds.) Gas Transfer at Water Surfaces, pp. 17–25. Reidel D Publishing, Boston (1984)

  • Liu, W., Shen, S., Riffat, S.B.: Heat transfer and phase change of liquid in an inclined enclosure packed with unsaturated porous media. Int. J. Heat Mass Transf. 45, 5209–5219 (2002)

    Article  Google Scholar 

  • Lozano, A., Cherblanc, F., Cousin, B., Bénet, J.-C.: Experimental study and modeling of the water phase change kinetics in soils. Eur. J. Soil Sci. 59, 939–949 (2008)

    Article  Google Scholar 

  • Ouedraogo, F., Cherblanc, F., Naon, B., Bénet, J.-C.: Water transfer in soil at low water content. Is the local equilibrium assumption still appropriate? J. Hydrol. 492, 117–127 (2013)

    Article  Google Scholar 

  • Ouoba, S., Cousin, B., Cherblanc, F., Koulidiati, J., Bénet, J.C.: Une méthode mécanique pour déterminer la porosité totale d’un sol. Comptes Rendus Mécanique (2014). doi:10.1016/j.crme.2014.07.003

  • Ouoba, S., Cousin, B., Cherblanc, F., Bénet, J.-C.: Une méthode mécanique pour mesurer la pression de vapeur d’équilibre de l’eau dans un milieu complexe. Comptes Rendus Mécanique 338, 113–119 (2010a)

    Article  Google Scholar 

  • Ouoba, S., Cherblanc, F., Cousin, B., Bénet, J.-C.: A new experimental method to determine the sorption isotherm of a liquid in a porous medium. Environ. Sci. Technol. 44, 5915–5919 (2010b)

    Article  Google Scholar 

  • Rahli, O., Topin, F., Tadrist, L., Pantaloni, J.: Analysis of heat transfer with liquid–vapor phase change in a forced-flow fluid moving through porous media. Int. J. Heat Mass Transf. 39, 3959–3975 (1996)

    Article  Google Scholar 

  • Schreitmüller, J., Ballschmiter, K.: Air–water equilibrium of hexachlorocyclohexanes and chloromethoxybenzenes in the North and South Atlantic. Environ. Sci. Technol. 29, 207–215 (1995)

    Article  Google Scholar 

  • Stadler, L., Hinkelmann, R., Helmig, R.: Modeling macroporous soils with a two-phase dual-permeability model. Transp. Porous Media 95, 585–601 (2012)

    Article  Google Scholar 

  • Staudinger, J., Roberts, P.V.: A critical review of Henry’s law constants for environmental applications. Crit. Rev. Environ. Sci. Technol. 26, 205–297 (1996)

    Article  Google Scholar 

  • Staudinger, J., Roberts, P.V.: A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576 (2001)

    Article  Google Scholar 

  • Steinberg, S.M.: Sorption of benzene and triehioroethylene (TCE) on a desert soil: effects of moisture and organic matter. Chemosphere 33, 961–980 (1996)

    Article  Google Scholar 

  • Tong, F., Niemi, A., Yang, Z., Fagerlund, F., Licha, T., Sauter, M.: A numerical model of tracer transport in a non-isothermal two-phase flow system for \(\text{ CO }_{2}\) geological storage characterization. Transp. Porous Media 98, 173–192 (2013). doi: 10.1007/s11242-013-0138-x

    Article  Google Scholar 

  • Unger, D., Lam, T., Schaefer, C., Kosson, D.: Predicting the effect of moisture on vapor-phase sorption of volatile organic compounds to soils. Environ. Sci. Technol. 30, 1081–1091 (1996)

    Article  Google Scholar 

  • Zhao, T.S., Cheng, P., Wang, C.Y.: Buoyancy-induced flows and phase-change heat transfer in a vertical capillary structure with symmetric heating. Chem. Eng. Sci. 55, 2653–2661 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was done within the framework of collaboration between the University Montpellier 2, France and the University of Ouagadougou, Burkina-Faso and supported by the French Ministry of Foreign affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ouoba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouoba, S., Daho, T., Cherblanc, F. et al. A New Experimental Method to Determine the Evaporation Coefficient of Trichloroethylene (TCE) in an Arid Soil. Transp Porous Med 106, 339–353 (2015). https://doi.org/10.1007/s11242-014-0404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0404-6

Keywords

Navigation