Skip to main content
Log in

Micro-structural Impact of Different Strut Shapes and Porosity on Hydraulic Properties of Kelvin-Like Metal Foams

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Various ideal periodic isotropic structures of foams (tetrakaidecahedron) with constant ligament cross section are studied. Different strut shapes namely circular, square, diamond, hexagon, star, and their various orientations are modeled using CAD. We performed direct numerical simulations at pore scale, solving Navier–Stokes equation in the fluid space to obtain various flow properties namely permeability and inertia coefficient for all shapes in the porosity range, \(0.60<\varepsilon <0.95\) for wide range of Reynolds numbers, \(10^{-6}<Re<3000\). We proposed an analytical model to obtain pressure drop in metallic foams in order to correlate the resulting macroscopic pressure and velocity gradients with the Ergun-like approach. The analytical results are fully compared with the available numerical data, and an excellent agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(\Delta P\) :

Pressure drop (\(\hbox {Pa}\))

\(\Delta x\) :

Length of fluid medium (\(\hbox {m}\))

\(K\) :

Forchheimer permeability (\(\hbox {m}^{2}\))

\(K^{\prime }\) :

Darcian permeability (\(\hbox {m}^{2}\)) (Eq. 7)

\(\beta \) :

Inertia coefficient (polynomial curve) (\(\hbox {m}^{-1}\))

\(\beta ^{\prime }\) :

Forchheimer inertia coefficient (\(\hbox {m}^{-1}\)) (Eq. 13)

\(V_\mathrm{s}\) :

Solid volume of foam (\(\hbox {m}^{3}\))

\(V_\mathrm{T}\) :

Volume of octahedron (\(\hbox {m}^{3}\))

\(V\) :

Superficial fluid velocity (\(\hbox {m}\,\hbox {s}^{-1}\))

\(A\) :

Ergun parameter (dimensionless)

\(B\) :

Ergun parameter (dimensionless)

\(f\) :

Universal inertial coefficient (dimensionless)

\(Re_\mathrm{c}\) :

Critical Reynolds number (dimensionless)

\(D_\mathrm{p}\) :

Particle diameter (\(\mathrm{m}\))

\(Re\) :

Reynolds number (dimensionless)

\(a_\mathrm{c}\) :

Specific surface area (\(\mathrm{m}^{-1}\))

\(d_\mathrm{p}\) :

Pore diameter (\(\hbox {m}\))

\(d_\mathrm{cell} \) :

Cell diameter (\(\hbox {m}\))

\(\nabla P\) :

Pressure gradient (\(\mathrm{Pa\,m^{-1}}\))

\(\nabla \langle P \rangle \) :

Average Pressure gradient (\(\mathrm{Pa}\, \mathrm{m}^{-1}\))

\(\langle V\rangle \) :

average velocity (\(\hbox {m}\,\hbox {s}^{-1}\))

\(P\) :

Fluid force (\(\mathrm{N}\))

\(S\) :

Solid-fluid interface area (\(\hbox {m}^{2}\))

\(d_\mathrm{p}^\mathrm{eq}\) :

Equivalent sphere diameter (\(\hbox {m}\))

\(d_\mathrm{s}\) :

Strut diameter (\(\hbox {m}\))

\(A_\mathrm{side}\) :

Side length of strut shape (\(\hbox {m}\))

\(\varepsilon \) :

Porosity, dimensionless

\(\mu \) :

Fluid viscosity (\(\hbox {kg m}^{-1}\,\hbox {s}^{-1}\))

\(\rho \) :

Fluid density (\(\hbox {kg m}^{-3}\))

\(\varepsilon _\mathrm{sur} \) :

Surface Porosity (dimensionless)

References

  • Alder, P.M., Malevich, A.E., Mityushev, V.V.: Nonlinear correction to Darcy’s law for channels with wavy wall. Acta Mech. 224, 1823–1848 (2013)

    Article  Google Scholar 

  • Avenall, R.J.: Use of metallic foams for heat transfer enhancement in the cooling jacket of a rocket propulsion element. Master’s thesis, University of Florida (2004)

  • Beavers, G.S., Sparrow, E.M.: Non-Darcy flow through fibrous porous media. J. Appl. Mech. 36(4), 711–714 (1969)

    Article  Google Scholar 

  • Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45(5), 1017–1031 (2002)

    Article  Google Scholar 

  • Bonnet, J.P., Topin, F., Tadrist, L.: Flow laws in metal foams: compressibility and pore size effects. Transp. Porous Media 73(2), 233–254 (2008)

    Article  Google Scholar 

  • Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. J. Fluids Eng. 124(1), 263–272 (2002)

    Article  Google Scholar 

  • Buciuman, F.C., Kraushaar-Czarnetzki, B.: Ceramic foam monoliths as catalyst carriers. 1. Adjustment and description of the morphology. J. Ind. Eng. Chem. Res. 42, 1863–1869 (2003)

    Article  Google Scholar 

  • Chauveteau, G.: Essai sur la loi de Darcy. PhD thesis, University of Toulouse (1965)

  • Dairon, J., Gaillard, Y.: Casting parts with CTIF foams. MetFoam Conference, Brastislava (2009)

  • De Jaeger, P., T’Joen, C., Huisseune, H., Ameel, B., De Paepe, M.: An experimentally validated and parameterized periodic unit-cell reconstruction of open-cell foams. J. Appl. Phy. 109(10), 103519 (2011)

    Article  Google Scholar 

  • Dietrich, B., Schabel, W., Kind, M., Martin, H.: Pressure drop measurements of ceramic sponges—determining the hydraulic diameter. Chem. Eng. Sci. 64(16), 3633–3640 (2009)

    Article  Google Scholar 

  • Du Plessis, P., Montillet, A., Comiti, J., Legrand, J.: Pressure drop prediction for flow through high porosity metal foams. Chem. Eng. Sci. 49(21), 3545–3553 (1994)

    Article  Google Scholar 

  • Edouard, D., Lacroix, M., Huu, C.P., Luck, F.: Pressure drop modeling on solid foam: state-of-the-art correlation. Chem. Eng. J. 144(2), 299–311 (2008)

    Article  Google Scholar 

  • Ergun, S., Orning, A.A.: Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem. Res. 41, 1179–1184 (1949)

    Article  Google Scholar 

  • Firdaous, M., Guermond, J.L., Le Quere, P.: Nonlinear corrections to Darcy’s law at low Reynolds numbers. J. Fluid Mech. 343, 331–350 (1997)

    Article  Google Scholar 

  • Fourar, M., Radilla, G., Lenormand, R., Moyne, C.: On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media. Adv. Water Resour. 27(6), 669–677 (2004)

    Article  Google Scholar 

  • Giani, L., Groppi, G., Tronconi, E.: Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind. Eng. Chem. Res. 44(14), 4993–5002 (2005)

    Article  Google Scholar 

  • Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  • Inayat, A., Freund, H., Zeiser, T., Schwieger, W.: Determining the specific surface area of ceramic foams: the tetrakaidecahedra model revisited. Chem. Eng. Sci. 66(6), 1179–1188 (2011)

    Article  Google Scholar 

  • Incera Garrido, G., Patcas, F.C., Lang, S., Kraushaar-Czarnetzki, B.: Mass transfer and pressure drop in ceramic foams: a description of different pore sizes and porosities. Chem. Eng. Sci. 63(21), 5202–5217 (2008)

    Article  Google Scholar 

  • Jung, A., Natter, H., Diebels, S., Lach, E., Hempelmann, R.: Nano-Nickel coated aluminum foam for enhanced impact energy absorption. Adv. Eng. Mat. 13(1–2), 23–28 (2011)

    Article  Google Scholar 

  • Kanaun, S., Tkachenko, O.: Effective conductive properties of open-cell foams. Int. J. Eng. Sci. 46, 551–571 (2008)

    Article  Google Scholar 

  • Kim, S.Y., Paek, J.W., Kang, B.H.: Flow and heat transfer correlations for porous fin in plate-fin heat exchanger. J. Heat Transf. 122(3), 572–578 (2000)

    Article  Google Scholar 

  • Lacroix, M., Nguyen, P., Schweich, D., Huu, C., Savin-Poncet, S., Edouard, D.: Pressure drop measurements and modeling on SiC foams. Chem. Eng. Sci. 62(12), 3259–3267 (2007)

    Article  Google Scholar 

  • Lafdi, K., Mesalhy, O., Shaikh, S.: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials. J. Appl. Phy. 102, 083549 (2007)

    Article  Google Scholar 

  • Langlois, S., Coeuret, F.: Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization. J. Appl. Electrochem. 19(1), 43–50 (1989)

    Article  Google Scholar 

  • Losito, O.: An analytical characterization of metal foams for shielding applications. PIERS Online 4, 805–810 (2008)

    Article  Google Scholar 

  • Lu, T.J., Stone, H.A., Ashby, M.F.: Heat transfer in open-cell metal foams. Acta Mater. 46(10), 3619–3635 (1998)

    Article  Google Scholar 

  • Madani, B., Topin, F., Tadrist, L., Rigollet, F.: Flow laws in metallic foams: experimental determination of inertial and viscous contribution. J. Porous Media 10(1), 51–70 (2006)

    Article  Google Scholar 

  • Mei, C.C., Auriault, J.L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991)

    Article  Google Scholar 

  • Moreira, E.A., Innocentini, M.D.M., Coury, J.R.: Permeability of ceramic foams to compressible and incompressible flow. J. Eur. Ceram. Soc. 24(10–11), 3209–3218 (2004)

    Article  Google Scholar 

  • Richardson, J.T., Peng, Y., Remue, D.: Properties of ceramic foam catalyst supports: pressure drop. Appl. Catal. A 204(1), 19–32 (2000)

    Article  Google Scholar 

  • Vicente, J., Topin, F., Daurelle, J.V.: Open celled material structural properties measurement: from morphology to transport properties. Mater. Trans. 47(9), 2195–2202 (2006)

    Article  Google Scholar 

  • Whitaker, S.: The Method of Averaging, vol. 13. Kluwer Academic Publisher, Dordrecht (1999)

    Book  Google Scholar 

  • Wodie, J.C., Levy, T.: Correction non linéaire de la loi de Darcy. Comptes rendus de l’Académie des sciences 312(2), 157–161 (1991)

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to ANR (Agence Nationale de la Recherche) for financial support in the framework of FOAM project and all project partners for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Appendices

Appendix 1

Specific surface area of a square strut shape is given as

$$\begin{aligned} a_\mathrm{c} =\frac{\left\{ {96A_\mathrm{s} L_\mathrm{s} +24.\frac{3}{4}\left( {\frac{5}{4}A_\mathrm{s} ^{2}} \right) } \right\} }{2\left( {8\sqrt{2}L^{3}} \right) }=\frac{1}{\sqrt{2}L}\left( {6\alpha _\mathrm{s} \chi +\frac{45}{32}\alpha _\mathrm{s} ^{2}} \right) \end{aligned}$$
(25)

where \(\alpha _\mathrm{s} =\frac{A_\mathrm{s} }{L}\) and \(\beta =\frac{L_\mathrm{s} }{L}\).

Specific surface area of a rotated square strut shape is given as

$$\begin{aligned} a_\mathrm{c} =\frac{\left\{ {96A_\mathrm{rs} L_\mathrm{s} +24.\frac{3}{4}\left( {\frac{5}{4}A_\mathrm{rs} ^{2}} \right) } \right\} }{2\left( {8\sqrt{2}L^{3}} \right) }=\frac{1}{\sqrt{2}L}\left( {6\alpha _\mathrm{rs} \chi +\frac{45}{32}\alpha _\mathrm{rs} ^{2}} \right) \end{aligned}$$
(26)

where \(\alpha _\mathrm{rs} =\frac{A_\mathrm{rs} }{L}\) and \(\beta =\frac{L_\mathrm{s} }{L}\).

Specific surface area of a diamond strut shape is given as

$$\begin{aligned} a_\mathrm{c} =\frac{\left\{ {96A_\mathrm{det} L_\mathrm{s} +24.\frac{3}{4}\left( {\frac{5}{4}\left( {\frac{\sqrt{3}}{2}A_\mathrm{det} ^{2}} \right) } \right) } \right\} }{2\left( {8\sqrt{2}L^{3}} \right) }=\frac{1}{\sqrt{2}L}\left( {6\alpha _\mathrm{det} \chi +\frac{45\sqrt{3}}{64}\alpha _\mathrm{det} ^{2}} \right) \end{aligned}$$
(27)

where \(\alpha _\mathrm{det} =\frac{A_\mathrm{rs} }{L}\) and \(\beta =\frac{L_\mathrm{s} }{L}\).

Specific surface area of a hexagon strut shape is given as

$$\begin{aligned} a_\mathrm{c} =\frac{\left\{ {144A_\mathrm{h} L_\mathrm{s} +24.\frac{3}{4}\left( {\frac{5}{4}\left( {\frac{3\sqrt{3}}{2}A_\mathrm{h} ^{2}} \right) } \right) } \right\} }{2\left( {8\sqrt{2}L^{3}} \right) }=\frac{1}{\sqrt{2}L}\left( {9\alpha _\mathrm{h} \chi +\frac{135\sqrt{3}}{64}\alpha _\mathrm{h} ^{2}} \right) \end{aligned}$$
(28)

where \(\alpha _\mathrm{h} =\frac{A_\mathrm{h} }{L}\) and \(\beta =\frac{L_\mathrm{s} }{L}\).

Specific surface area of a star strut shape is given as

$$\begin{aligned} a_\mathrm{c} =\frac{\left\{ {288A_\mathrm{st} L_\mathrm{s} +24.\frac{3}{4}\left( {\frac{5}{4}\left( {3\sqrt{3}A_\mathrm{st} ^{2}} \right) } \right) } \right\} }{2\left( {8\sqrt{2}L^{3}} \right) }=\frac{1}{\sqrt{2}L}\left( {18\alpha _\mathrm{st} \chi +\frac{135\sqrt{3}}{32}\alpha _\mathrm{st} ^{2}} \right) \end{aligned}$$
(29)

where \(\alpha _\mathrm{st} =\frac{A_\mathrm{st} }{L}\) and \(\beta =\frac{L_\mathrm{s} }{L}\).

Appendix 2

For a square strut shape, \(R_\mathrm{eq} =A_\mathrm{s} /\sqrt{\pi }\)

$$\begin{aligned} \varepsilon =\frac{1-\frac{1}{3}\left( {36A_\mathrm{s} ^{2}L_\mathrm{s} +24.\frac{4}{3}A_\mathrm{s} ^{3}/\sqrt{\pi }} \right) }{8\sqrt{2}L^{3}}\Leftrightarrow 12\alpha _\mathrm{s} ^{2}\chi +\frac{32}{3\sqrt{\pi }}\alpha _\mathrm{s} ^{3}=8\sqrt{2}\left( {1-\varepsilon } \right) \end{aligned}$$
(30)

For a rotated square strut shape, \(R_\mathrm{eq} =A_\mathrm{rs} /\sqrt{\pi }\)

$$\begin{aligned} \varepsilon =\frac{1-\frac{1}{3}\left( {36A_\mathrm{rs} ^{2}L_\mathrm{s} +24.\frac{4}{3}A_\mathrm{rs} ^{3}/\sqrt{\pi }} \right) }{8\sqrt{2}L^{3}}\Leftrightarrow 12\alpha _\mathrm{rs} ^{2}\chi +\frac{32}{3\sqrt{\pi }}\alpha _\mathrm{rs} ^{3}=8\sqrt{2}\left( {1-\varepsilon } \right) \end{aligned}$$
(31)

For a diamond strut shape, \(R_\mathrm{eq} =A_\mathrm{det}.\sqrt{\sqrt{3}/2\pi }\)

$$\begin{aligned} \varepsilon&= \frac{1-\frac{1}{3}\left( {36\frac{\sqrt{3}}{2}A_\mathrm{det} ^{2}L_\mathrm{s} +24.\frac{4}{3}.\frac{\sqrt{3}}{2}.\sqrt{\frac{\sqrt{3}}{2\pi }}A_\mathrm{det} ^{3}} \right) }{8\sqrt{2}L^{3}}\Leftrightarrow 6\sqrt{3}\alpha _\mathrm{det} ^{2}\chi +\frac{16}{\sqrt{3}}\sqrt{\frac{\sqrt{3}}{2\pi }}\alpha _\mathrm{det} ^{3}\nonumber \\&= 8\sqrt{2}\left( {1-\varepsilon } \right) \end{aligned}$$
(32)

For a hexagon strut shape, \(R_\mathrm{eq} =A_\mathrm{h}.\sqrt{3\sqrt{3}/2\pi }\)

$$\begin{aligned} \varepsilon&= \frac{1-\frac{1}{3}\left( {36\frac{3\sqrt{3}}{2}A_\mathrm{h} ^{2}L_\mathrm{s} +24.\frac{4}{3}.\frac{3\sqrt{3}}{2}.\sqrt{\frac{3\sqrt{3}}{2\pi }}A_\mathrm{h} ^{3}} \right) }{8\sqrt{2}L^{3}}\Leftrightarrow 18\sqrt{3}\alpha _\mathrm{h} ^{2}\chi +16\sqrt{3}\sqrt{\frac{3\sqrt{3}}{2\pi }}\alpha _\mathrm{h} ^{3}\nonumber \\&= 8\sqrt{2}\left( {1-\varepsilon } \right) \end{aligned}$$
(33)

For a star (regular hexagram) strut shape, \(R_\mathrm{eq} =A_\mathrm{st} .\sqrt{3\sqrt{3}/\pi }\)

$$\begin{aligned} \varepsilon&= \frac{1-\frac{1}{3}\left( {36\sqrt{3}A_\mathrm{st} ^{2}L_\mathrm{s} +24.\frac{4}{3}.3\sqrt{3}.\sqrt{\frac{3\sqrt{3}}{\pi }}A_\mathrm{st} ^{3}} \right) }{8\sqrt{2}L^{3}}\Leftrightarrow 36\sqrt{3}\alpha _\mathrm{st} ^{2}\chi +32\sqrt{3}\sqrt{\frac{3\sqrt{3}}{\pi }}\alpha _\mathrm{st} ^{3}\nonumber \\&= 8\sqrt{2}\left( {1-\varepsilon } \right) \end{aligned}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Topin, F. Micro-structural Impact of Different Strut Shapes and Porosity on Hydraulic Properties of Kelvin-Like Metal Foams. Transp Porous Med 105, 57–81 (2014). https://doi.org/10.1007/s11242-014-0358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0358-8

Keywords

Navigation