Skip to main content
Log in

Natural Convection in a Nanofluid-Saturated Rotating Porous Layer: A More Realistic Approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The present work aims at studying the thermal instability in a rotating porous layer saturated by a nanofluid based on a new boundary condition for the nanoparticle fraction, which is physically more realistic. The model used for nanofluid combines the effect of Brownian motion along with thermophoresis, while for a porous medium Brinkman model has been used. A more realistic set of boundary conditions where the nanoparticle volume fraction adjusts itself including the contributions of the effect of thermophoresis so that the nanoparticle flux is zero at the boundaries has been considered. Using linear stability analysis, the expression for critical Rayleigh number has been obtained in terms of various non-dimensional parameters. The effect of various parameters on the onset of instability has been presented graphically and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(D_\mathrm{B}\) :

Brownian diffusion coefficient

\(D_\mathrm{T}\) :

Thermophoretic diffusion coefficient

\(Da\) :

Darcy number

\(Pr\) :

Pradtl number

\(d\) :

Dimensional layer depth

\(k_\mathrm{T }\) :

Effective thermal conductivity of porous medium

\(k_\mathrm{m}\) :

Thermal diffusivity of porous medium

\(Le\) :

Lewis number

\(N_A\) :

Modified diffusivity ratio

\(N_B\) :

Modified particle-density increment

\(p\) :

Pressure

\(g\) :

Gravitational acceleration

\(Ra\) :

Thermal Rayleigh–Darcy number

\(Rm\) :

Basic density Rayleigh number

\(Rn\) :

Concentration Rayleigh number

\(t\) :

Time

\(T\) :

Temperature

\(T_\mathrm{c}\) :

Temperature at the upper wall

\(T_\mathrm{h}\) :

Temperature \(t\) at the lower wall

\(\mathbf v \) :

Nanofluid velocity

\(\mathbf v _\mathrm{D}\) :

Darcy velocity \(\varepsilon \mathbf v \)

\((x^*,y^*,z^*)\) :

Cartesian coordinates

\(Ta\) :

Taylor number

\(\alpha \) :

Horizontal wave number

\(\beta \) :

Proportionality factor

\(\varepsilon \) :

Porosity

\(\mu \) :

Viscosity of the fluid

\(\bar{\mu }\) :

Effective viscosity of the porous medium

\(\rho _\mathrm{f}\) :

Fluid density

\(\rho _\mathrm{p}\) :

Nanoparticle mass density

\((\rho c )_\mathrm{f}\) :

Heat capacity of the fluid

\((\rho c)_\mathrm{m}\) :

Effective heat capacity of the porous medium

\((\rho c)_\mathrm{p}\) :

Effective heat capacity of the nanoparticle material

\(\gamma \) :

Parameter defined as \(\displaystyle \frac{(\rho c)_\mathrm{m}}{(\rho c)_\mathrm{f}}\)

\(\phi \) :

Nanoparticle volume fraction

\(\nu \) :

Kinematic viscosity \(\mu / \rho _\mathrm{f} \)

\(\psi \) :

Stream function

\(\alpha \) :

Wave number

\(\omega \) :

Frequency of oscillation

\(b\) :

Basic solution

\(*\) :

Dimensional variable

\( '\) :

Perturbation variable

\(\nabla ^2\) :

\(\displaystyle \frac{\partial ^2}{\partial x^2} + \displaystyle \frac{\partial ^2}{\partial y^2} + \displaystyle \frac{\partial ^2}{\partial z^2}\)

\(\nabla _1^2\) :

\(\displaystyle \frac{\partial ^2}{\partial x^2} + \displaystyle \frac{\partial ^2}{\partial z^2}\)

References

  • Agarwal, S., Bhadauria, B.S., Siddheshwar, P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Spec. Top. Rev. Porous Media 2(1), 53–64 (2011)

  • Agarwal, S., Bhadauria, B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal non equilibrium model. Transp. Porous Media 90, 627–654 (2011)

  • Bhadauria, B.S., Agarwal, S., Kumar, A.: Non-linear two-dimensional convection in a nanofluid saturated porous medium. Transp. Porous Media 90(2), 605–625 (2011)

  • Bhadauria, B.S., Agarwal, S.: Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp. Porous Media 87(2), 585–602 (2011)

  • Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  • Chand, R., Rana, G.C.: On the onset of thermal convection in rotating nanofluid layer saturating a Darcy–Brinkman porous medium. Int. J. Heat Mass Transf. 55, 5417–5424 (2012)

    Article  Google Scholar 

  • Chandrashekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)

    Google Scholar 

  • Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Eastman, J.A., Choi, S.U.S., Yu, W., Thompson, L.J.: Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Article  Google Scholar 

  • Keblinski, P., Cahil, D.G.: Comments on model for heat conduction in nanofluids. Phy. Rev Lett. 95, 209401 (2005)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp. Porous Media 81, 409–422 (2010a)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 83, 425–436 (2010b)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid. Transp. Porous Media 87, 765–775 (2011)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)

  • Tzou, D.Y.: Instability of nanofluids in natural convection. ASME. J. Heat Transf. 130, 072401 (2008a)

  • Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008b)

    Article  Google Scholar 

Download references

Acknowledgments

The author SA greatly acknowledges the inputs provided by Prof. B. S. Bhadauria, Head Department of Mathematics, Babasaheb Bhimrao Ambedkar University, Lucknow, India, for carrying out this work. The author is also thankful to the referees for their useful comments that helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S. Natural Convection in a Nanofluid-Saturated Rotating Porous Layer: A More Realistic Approach. Transp Porous Med 104, 581–592 (2014). https://doi.org/10.1007/s11242-014-0351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0351-2

Keywords

Navigation