Skip to main content
Log in

On Three-Dimensional Non-linear Buoyant Convection in Ternary Solidification

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We consider the problem of three-dimensional non-linear buoyant convection in ternary solidification. Under the limit of large far-field temperature, the convective flow is modeled to be in a rectangular cube composing of a horizontal liquid layer above a primary mushy layer, which itself is over a secondary mushy layer. We first apply linear stability analysis to calculate the conditions at the onset of motion. Next, we carry out weakly non-linear analyses to determine solutions in the form of hexagons and their possible stability and to obtain information about tendency for chimney formation. We find that if the flow is driven either from both mushy layers with equal critical conditions at the onset of motion or only by the primary mushy layer, then the flow can be in the form of a double-cell structure vertically with down-hexagons below or above up-hexagons. There is tendency for vertically oriented chimney formation at different horizontal locations in each mushy layer. For the cases where only the critical conditions at the onset of motion are equal in both mushy layers and depending on the values of the mush Rayleigh numbers, the flow can be subcritical (or supercritical) in both mushy layers or mixed subcritical in one layer and supercritical in another layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitta, A., Huppert, H.E., Worster, M.G.: Diffusion-controlled solidification of a ternary melt from a cooled boundary. J. Fluid Mech. 432, 201–217 (2001a)

    Google Scholar 

  • Aitta, A., Huppert, H.E., Worster, M.G.: Solidification in ternary systems. In: Ehrhard, P., Riley, D.S., Steen, P.H. (eds.) Interactive Dynamics of Convection and Solidification, pp. 113–122. Kluwer, Dordrecht (2001b)

    Chapter  Google Scholar 

  • Amberg, G., Homsy, G.M.: Nonlinear analysis of buoyant convection in binary solidification with application to channel formation. J. Fluid Mech. 252, 79–98 (1993)

    Article  Google Scholar 

  • Anderson, D.M.: A model for diffusion-controlled solidification of ternary alloys in mushy layers. J. Fluid Mech. 483, 165–197 (2003)

    Article  Google Scholar 

  • Anderson, D.M., Schulze, T.P.: Linear and nonlinear convection in solidifying ternary alloys. J. Fluid Mech. 545, 213–243 (2005)

    Article  Google Scholar 

  • Anderson, D.M., Worster, M.G.: Weakly nonlinear analysis of convection in mushy layers during the solidification of binary alloys. J. Fluid Mech. 302, 307–331 (1995)

    Article  Google Scholar 

  • Anderson, D.M., Mcfadden, G.B., Coriell, S.R., Murray, B.T.: Convective instabilities during the solidification of an ideal ternary alloy in a mushy layer. J. Fluid Mech. 647, 309–333 (2010)

    Article  Google Scholar 

  • Bloomfield, L.J., Huppert, H.E.: Solidification and convection of a ternary solution cooled from the side. J. Fluid Mech. 489, 269–299 (2003)

    Article  Google Scholar 

  • Busse, F.H.: Nonlinear properties of thermal convection. Rep. Prog. Phys 4, 11929–191967 (1978)

    Google Scholar 

  • Chung, C.A., Chen, F.: Onset of plume convection in mushy layers. J. Fluid Mech. 408, 53–82 (2000)

    Article  Google Scholar 

  • Copley, S.M., Giamei, A.F., Johnson, S.M., Hornbecker, M.F.: The origin of freckles in uni-directionally solidified casting. Metall. Trans. 1, 2193–2204 (1970)

    Article  Google Scholar 

  • Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Riahi, D.N.: On nonlinear convection in mushy layers. Part 1. Oscillatory modes of convection. J. Fluid Mech. 467, 331–359 (2002)

    Article  Google Scholar 

  • Roper, S.M., Davis, S.H., Voorhees, P.W.: An analysis of convection in a mushy layer with a deformable permeable interface. J. Fluid Mech. 596, 335–352 (2008)

    Article  Google Scholar 

  • Tait, S., Jahrling, K., Jaupart, C.: The planform of compositional convection and chimney formation in a mushy layer. Nature 359, 406–408 (1992)

    Article  Google Scholar 

  • Thompson, A.F., Huppert, H.E., Worster, M.G.: A global conservation model for diffusion-controlled solidification of a ternary alloy. J. Fluid Mech. 483, 191–197 (2003a)

    Google Scholar 

  • Thompson, A.F., Huppert, H.E., Worster, M.G.: Solidification and compositional convection of a ternary alloy. J. Fluid Mech. 497, 167–199 (2003b)

    Article  Google Scholar 

  • Worster, M.G.: Natural convection in a mushy layer. J. Fluid Mech. 224, 335–359 (1991)

    Article  Google Scholar 

  • Worster, M.G.: Instabilities of the liquid and mushy regions during solidification of alloys. J. Fluid Mech. 237, 649–669 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Riahi.

Appendix

Appendix

The systems for dependent variables \(\mathbf{u}\), \(P\), and \(T\) at order \(\varepsilon ^{2}\) in each of the three layers are given below: In the liquid layer we have

$$\begin{aligned}&\displaystyle d_\mathrm{a} {\nabla }^{2}\mathbf{u}_{1}={\nabla }P_{1},\end{aligned}$$
(37a)
$$\begin{aligned}&\displaystyle {\nabla } \cdot \mathbf{u}_{1} =0,\end{aligned}$$
(37b)
$$\begin{aligned}&\displaystyle {\nabla }^{2}T_{1}-(\hbox {d}T_{\mathrm{B}}/\hbox {d}z)w_{1}= \mathbf{u}_{0} \cdot {\nabla }T_{0},\end{aligned}$$
(37c)
$$\begin{aligned}&\displaystyle T_{1}=\mathbf{u}_{1}=0\;\hbox {at}\;z =L,\end{aligned}$$
(37d)
$$\begin{aligned}&\displaystyle [T_{1}]=[{\partial }T_{1}/{\partial }z]= [\mathbf{u}_{1}]=[P_{1}]= T_{1}{\vert }^{+}=0\;\hbox {at}\;z=l. \end{aligned}$$
(37e)

In the primary mushy layer we have

$$\begin{aligned}&\displaystyle \mathbf{u}_{1}+{\nabla }P_{1}= -(R_\mathrm{p0} T_{1}+R_\mathrm{p1}T_{0}) \mathbf{z},\end{aligned}$$
(38a)
$$\begin{aligned}&\displaystyle {\nabla } \cdot \mathbf{u}_{1}=0,\end{aligned}$$
(38b)
$$\begin{aligned}&\displaystyle {\nabla }^{2}T_{1}-(\hbox {d}T_{\mathrm{B}}/\hbox {d}z)w_{1}= \mathbf{u}_{0} \cdot {\nabla }T_{0},\end{aligned}$$
(38c)
$$\begin{aligned}&\displaystyle [T_{1}]=[{\partial }T_{1} /{\partial }z]=[\mathbf{u}_{1}]=[P_{1}]=T_{1}{\vert }^{+}=0\;\hbox {at}\;z =1. \end{aligned}$$
(38d)

In the secondary mushy layer we have

$$\begin{aligned}&\displaystyle \mathbf{u}_{1}+{\nabla }P_{1}= -(R_\mathrm{s0} T_{1}+R_\mathrm{s1}T_{0}) \mathbf{z},\end{aligned}$$
(39a)
$$\begin{aligned}&\displaystyle {\nabla } \cdot \mathbf{u}_{1}=0,\end{aligned}$$
(39b)
$$\begin{aligned}&\displaystyle {\nabla }^{2}T_{1}-(\hbox {d}T_{\mathrm{B}}/\hbox {d}z)w_{1} = \mathbf{u}_{0} \cdot {\nabla }T_{0},\end{aligned}$$
(39c)
$$\begin{aligned}&\displaystyle T_{1}=w_{1}=0\;\hbox {at}\;z =0. \end{aligned}$$
(39d)

The expressions for \(S_{1pq}, S_{2}, S_{3pq}, S_{4}\), and \(S_{5pq}\), which were introduced in (26) are

$$\begin{aligned}&\displaystyle S_{1pq}=\int _{l}^\mathrm{L} T_\mathrm{a1}(z)\{i\,f_{4}(z)[{\alpha }_{\mathrm{px}}\, f_{1}(z, q)+{\alpha }_\mathrm{py} f_{2}(z, q)]+f_{3}(z)[\hbox {d}\,f_{4}(z)/\hbox {d}z]\}\hbox {d}z,\end{aligned}$$
(40a)
$$\begin{aligned}&\displaystyle S_{2}=\int _{1}^{l} [w_\mathrm{a2 }(z) f_{8} (z)]\hbox {d}z,\end{aligned}$$
(40b)
$$\begin{aligned}&\displaystyle S_{3pq}=\int _{1}^{l} T_\mathrm{a2 }(z)\{i\,f_{8}(z)[{\alpha }_{\mathrm{px}}\, f_{5}(z, q)+{\alpha }_{\mathrm{py}}\, f_{6}(z, q)]+f_{7} (z)[\hbox {d}\, f_{8}(z)/\hbox {d}z]\}\hbox {d}z,\end{aligned}$$
(40c)
$$\begin{aligned}&\displaystyle S_{4}=\int _{0}^{1} [w_\mathrm{a3}(z) f_{12}(z)]\hbox {d}z,\end{aligned}$$
(40d)
$$\begin{aligned}&\displaystyle S_{5pq}{=}\int _{0}^{1} T_\mathrm{a3}(z)\{i\,f_{12}(z)[{\alpha }_{\mathrm{px}} \,f_{9}(z, q){+}{\alpha }_{\mathrm{py}}\, f_{10}(z, q)]{+}f_{11}(z)[\hbox {d}\, f_{12}(z)/\hbox {d}z]\}\hbox {d}z. \end{aligned}$$
(40e)

The expressions for \(S_{6}\)\(S_{8}\), which were introduced in (31a, 31b) are given below

$$\begin{aligned} S_{6}=\int ^\mathrm{L}_{l} [T_\mathrm{a1}(z)f_{4}(z)]\hbox {d}z, S_{7}=\int _{1}^{l} [T_\mathrm{a2}(z)f_{8}(z)]\hbox {d}z, S_{8}=\int _{0}^{1}[T_\mathrm{a3}(z)f_{12}(z)]\hbox {d}z. \end{aligned}$$
(41)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riahi, D.N. On Three-Dimensional Non-linear Buoyant Convection in Ternary Solidification. Transp Porous Med 103, 249–277 (2014). https://doi.org/10.1007/s11242-014-0300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0300-0

Keywords

Navigation