Skip to main content
Log in

Modeling of Nuclear Species Diffusion Through Cement-Based Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The use of cement-based materials for radioactive waste confinement and storage must rest on precise measurements of their physical and chemical properties. An important property is the diffusivity of tritium in its liquid form (tritiated water) through a sample considered as representative. Here, we report quantitatively the effect of radioactive decay compared to the effective diffusion coefficient on tritium diffusion. The numerical model was validated by comparing it to experimental data. We found that, in the worst case scenario, the calculated effective diffusion coefficient of tritiated water based on the classical analytical solution to Fick’s law is underestimated by more than 20 %, compared with the results provided by the numerical model, which accounts for the radioactive decay within the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • AFPC-AFREM: Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. AFPC-AFREM, Toulouse (1997)

  • Atabek, R., Bouniol, P., Vitorge, P., Le Bescop, P., Hoorelbeke, J.M.: Cement use for radioactive waste embedding and disposal purposes. Cem. Concr. Res. 22, 419–429 (1992)

    Article  Google Scholar 

  • Bégué, P., Lorente, S.: Migration versus diffusion through porous media: time dependent scale-analysis. J. Porous Media 9, 637–650 (2006)

    Google Scholar 

  • Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, Berlin (2004)

    Book  Google Scholar 

  • Bejan, A.: Convection Heat Transfer, 3rd edn. Wiley, Hoboken (2004)

    Google Scholar 

  • Bejaoui, S., Bary, B.: Modeling of the link between microstructure and effective diffusivity of cement pastes using a simplified composite model. Cem. Concr. Res. 37, 469–480 (2007)

    Article  Google Scholar 

  • Bejaoui, S., Sercombe, J., Mugler, C., Peycelon, H.: Modelling of radionuclide release from a concrete container. Transp. Porous Media 69, 89–107 (2007)

    Article  Google Scholar 

  • Carslaw, H., Jaeger, J.: Operational Methods in Applied Mathematics. Oxford University Press, London (1953)

    Google Scholar 

  • Cassette, P., Grigorescu, E.L., Razdolescu, A.C.: Obtaining tritiated water standards using triple to double coincidence ratio (TDCR) method. In: IDRANAP Conference, Neptun (2002)

  • Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford Science, Oxford (1980)

    Google Scholar 

  • Delagrave, A., Marchand, J., Pigeon, M.: Influence of microstructure of the tritiated water diffusivity on mortars. Adv. Cem. Based Mater. 7, 60–65 (1998)

    Article  Google Scholar 

  • Descostes, M., Pili, E., Felix, O., Frasca, B., Radwan, J., Juery, A.: Diffusive parameters of tritiated water and uranium in chalk. J. Hydrol. 452–453, 40–50 (2012)

    Article  Google Scholar 

  • Fick, A.: On liquid diffusion (reprinted from the London Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10 (1855) p. 30). J. Membr. Sci. 100, 33–38 (1995)

    Article  Google Scholar 

  • Frizon, F., Lorente, S., Ollivier, J.P., Thouvenot, P.: Transport model for the nuclear decontamination of cementitious materials. Comput. Mater. Sci. 27, 507–516 (2003)

    Article  Google Scholar 

  • Kamali-Bernard, S., Bernard, F., Prince, W.: Computer modelling of tritiated water diffusion test for cement based materials. Comput. Mater. Sci. 45, 528–535 (2009)

    Article  Google Scholar 

  • Locoge, P., Massat, M., Ollivier, J.P., Richet, C.: Ion diffusion in microcracked concrete. Cem. Concr. Res. 22, 431–438 (1992)

    Article  Google Scholar 

  • Lorente, S., Ollivier, J.P.: Scale analysis of electrodiffusion through porous media. J. Porous Media 9, 307–320 (2006)

    Article  Google Scholar 

  • Lorente, S., Voinitchi, D., Bégué-Escaffit, P., Bourbon, X.: The single-valued diffusion coefficient for ionic diffusion through porous media. J. Appl. Phys. 101, 024907 (2007)

    Article  Google Scholar 

  • Lorente, S.: Constructal view of electrokinetic transfer through porous media. J. Phys. D Appl. Phys. 40, 2941–2947 (2007)

    Article  Google Scholar 

  • Motellier, S., Devol-Brown, I., Savoye, S., Thoby, D., Alberto, J.-C.: Evaluation of tritiated water diffusion through the Toarcian clayey formation of the Tournemire experimental site (France). J. Contam. Hydrol. 94, 99–108 (2007)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  • Norme Française M60–326: Détermination du coefficient de diffusion effectif de l’eau tritiée dans un matériau de confinement. AFNOR, La Plaine Saint-Denis (2006)

  • Odian, G., Kruse, R.: Diffusional effects of radiation-induced graft in polymerization. J. Polym. Sci. 22, 691–712 (1969)

    Google Scholar 

  • Richet, C.: Etude de la migration des radioéléments dans les liants hydrauliques—Influence du vieillissement des liants sur les mécanismes et la cinétique des transferts. Thèse de l’Université Paris XI, Orsay (1992)

  • Savoye, S., Page, J., Puente, C., Imbert, C., Coelho, D.: New experimental approach for studying diffusion through an intact and unsaturated medium: a case study with Callovo-Oxfordian argillite. Environ. Sci. Technol. 44, 3698–3704 (2010)

    Article  Google Scholar 

  • Tevissen, E., Soler, J.M., Montarnal, P., Gautschi, A., Van Loon, L.R.: Comparison between in situ and laboratory diffusion studies of HTO and halides in Opalinus clay from the Mont Terri. Radiochim. Acta 92, 781–786 (2004)

    Article  Google Scholar 

  • Tits, J., Jakob, A., Wieland, E., Spieler, P.: Diffusion of tritiated water and \(^{22}{\rm Na}^{+}\) through non-degraded hardened cement pastes. J. Contam. Hydrol. 61, 45–62 (2003)

    Article  Google Scholar 

  • Vokal, A., Vopalka, D., Vecernik, P.: An approach for acquiring data for description of diffusion in safety assessment of radioactive waste repositories. J. Radioanal. Nucl. Chem. 286, 751–757 (2010)

    Article  Google Scholar 

  • Wilson, J.: Diffusion effects of the photochemistry of solid films. J. Chem. Phys. 22, 334–343 (1954)

    Article  Google Scholar 

  • Yamaguchi, T., Negishi, K., Hoshino, S., Tanaka, T.: Modeling of diffusive mass transport in micropores in cement based materials. Cem. Concr. Res. 39, 1149–1155 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and thank the National Radioactive Waste Management Agency, Andra, for supporting this study, and contributing to the funding of this research. We would like to address our special thank to A. Le Cocguen from CEA Cadarache for providing the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Lorente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wattez, T., Duhart-Barone, A. & Lorente, S. Modeling of Nuclear Species Diffusion Through Cement-Based Materials. Transp Porous Med 98, 699–712 (2013). https://doi.org/10.1007/s11242-013-0167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0167-5

Keywords

Navigation