Skip to main content
Log in

Dissolution of CO2 From Leaking Fractures in Saline Formations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Leakage of CO2 through fractures in saline formations will increase the CO2—brine interface and promote CO2 dissolution. We use a 2D, finite difference MATLAB model to simulate dissolution rates from a vertical fracture, with CO2 flowing through it, in a secondary storage formation. The instigation of convection currents increases dissolution rates leading to higher dissolution in higher Rayleigh number systems. Comparison of our results with fracture flow rates shows that for typical fracture apertures dissolution from a fracture is small relative to the amount of CO2 flowing through the fracture. Temporal and spatial variations in fracture permeability may reduce fracture flow rates and increase the relative amount of CO2 dissolved from the fracture compared to the CO2 flowing through the fracture. Further work on CO2 dissolution in relation to fracture heterogeneity, flow of CO2 within fractures and the interaction of multiple fractures will improve our ability to predict CO2 dissolution rates for site characterisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Annunziatellis A., Beaubien S., Bigi S., Ciotoli G., Coltella M., Lombardi S.: Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO2 geological storage. Int. J. Greenh. Gas Control 2(3), 353–372 (2008). doi:10.1016/j.ijggc.2008.02.003

    Article  Google Scholar 

  • Caine J.S., Evans J.P., Forster C.B.: Fault zone architecture and permeability structure. Geology 24(11), 1025–1028 (1996). doi:10.1130/0091-7613(1996)024<1025

    Article  Google Scholar 

  • Carneiro J.F.: Numerical simulations on the influence of matrix diffusion to carbon sequestration in double porosity fissured aquifers. Int. J. Greenh. Gas Control 3(4), 431–443 (2009). doi:10.1016/j.ijggc.2009.02.006

    Article  Google Scholar 

  • Carslaw H., Jaeger J.: Conduction of Heat in Solids, vol. 1, 2nd edn. Clarendon Press, Oxford (1959)

    Google Scholar 

  • Chalbaud C., Robin M., Lombard J., Martin F., Egermann P., Bertin H.: Interfacial tension measurements and wettability evaluation for geological CO2 storage. Adv. Water Resour. Res. 32(1), 98–109 (2009). doi:10.1016/j.advwatres.2008.10.012

    Article  Google Scholar 

  • Chang K.W., Minkoff S.E., Bryant S.L.: Simplified Model for CO2 Leakage and its Attenuation due to Geological Structures. Energy Procedia 1(1), 3453–3460 (2009). doi:10.1016/j.egypro.2009.02.136

    Article  Google Scholar 

  • Ennis-King J., Preston I., Paterson L.: Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17(8), 084107 (2005). doi:10.1063/1.2033911

    Article  Google Scholar 

  • Farajzadeh R., Ranganathan P., Zitha P., Bruining J.: The effect of heterogeneity on the character of density-driven natural convection of CO2 overlying a brine layer. Adv. Water Resour. Res. 34(3), 327–339 (2011). doi:10.1016/j.advwatres.2010.12.012

    Article  Google Scholar 

  • Farajzadeh R., Salimi H., Zitha P., Bruining H.: Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects. Int. J. Heat Mass Transf. 50(25-26), 5054–5064 (2007). doi:10.1016/j.ijheatmasstransfer.2007.08.019

    Article  Google Scholar 

  • Hassanzadeh H., Pooladi-darvish M., Keith D.W.: Scaling behavior of convective mixing with application to geological storage of CO2. AIChE J. 53(5), 1121–1131 (2007). doi:10.1002/aic

    Article  Google Scholar 

  • Horton, C.W., Rogers, F.T.: Convection Currents in a Porous Medium. J. of Appl. Phys. 16 (1945)

  • Iding M., Blunt M.J.: Enhanced solubility trapping of CO2 in fractured reservoirs. Energy Procedia 4, 4961–4968 (2011). doi:10.1016/j.egypro.2011.02.466

    Article  Google Scholar 

  • Iding M., Ringrose P.: Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenh. Gas Control 4(2), 242–248 (2010). doi:10.1016/j.ijggc.2009.10.016

    Article  Google Scholar 

  • Kneafsey T.J., Pruess K.: Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp. Porous Media 82(1), 123–139 (2010). doi:10.1007/s11242-009-9482-2

    Article  Google Scholar 

  • Mathias S., Butler A., Zhan H.: Approximate solutions for forchheimer flow to a well. J. Hydraul. Eng. 134, 1318 (2008)

    Article  Google Scholar 

  • Mathias S., Hardisty P., Trudell M., Zimmerman R.: Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media 79(2), 265–284 (2009)

    Article  Google Scholar 

  • Neufeld J.A., Hesse M.A., Riaz A., Hallworth M.A., Tchelepi H.A., Huppert H.E.: Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37(22), 2–6 (2010). doi:10.1029/2010GL044728

    Article  Google Scholar 

  • Pacala S., Socolow R.: Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686), 968–972 (2004). doi:10.1126/science.1100103

    Article  Google Scholar 

  • Pruess K.: On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ. Geol. 54(8), 1677–1686 (2007). doi:10.1007/s00254-007-0945-x

    Google Scholar 

  • Riaz A., Hesse M., Tchelepi H.A., Orr F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006). doi:10.1017/S0022112005007494

    Article  Google Scholar 

  • Sibson R.H.:: Conditions for fault-valve behaviour. Geological Society, London, Special Publications 54(1), 15–28 (1990). doi:10.1144/GSL.SP.1990.054.01.02

    Article  Google Scholar 

  • Turcotte D., Schubert G.: Geodynamics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • van Reeuwijk M., Mathias S., Simmons C., Ward J.: Insights from a pseudospectral approach to the elder problem. Water Resour. Res. 45(4), W04416 (2009). doi:10.1029/2008WR007421

    Article  Google Scholar 

  • Xu X., Chen S., Zhang D.: Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. in Water Resour. Res. 29(3), 397–407 (2006). doi:10.1016/j.advwatres.2005.05.008

    Article  Google Scholar 

  • Zimmerman R.W., Bodvarsson G.S.: Hydraulic conductivity of rock fractures. Transp. in Porous Media 23, 1–30 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca E. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, F.E., Mathias, S.A., van Hunen, J. et al. Dissolution of CO2 From Leaking Fractures in Saline Formations. Transp Porous Med 94, 729–745 (2012). https://doi.org/10.1007/s11242-012-0021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0021-1

Keywords

Navigation