Skip to main content
Log in

Operator Splitting Multiscale Finite Volume Element Method for Two-Phase Flow with Capillary Pressure

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A numerical method used for solving a two-phase flow problem as found in typical oil recovery is investigated in the setting of physics-based two-level operator splitting. The governing equations involve an elliptic differential equation coupled with a parabolic convection-dominated equation which poses a severe restriction for obtaining fully implicit numerical solutions. Furthermore, strong heterogeneity of the porous medium over many length scales adds to the complications for effectively solving the system. One viable approach is to split the system into three sub-systems: the elliptic, the hyperbolic, and the parabolic equation, respectively. In doing so, we allow for the use of appropriate numerical discretization for each type of equation and the careful exchange of information between them. We propose to use the multiscale finite volume element method (MsFVEM) for the elliptic and parabolic equations, and a nonoscillatory difference scheme for the hyperbolic equation. Performance of this procedure is confirmed through several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnes J.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. SIAM Multiscale Model. Simul. 3, 2031–2041 (2004)

    Google Scholar 

  • Aarnes J., Kippe V., Lie K.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water. Resour. 28, 257–271 (2005)

    Article  Google Scholar 

  • Abreu E., Furtado F., Pereira F.: On the numerical simulation of three-phase reservoir transport problems. Transp. Theor. Stat. 33(5–7), 503–526 (2004)

    Article  Google Scholar 

  • Abreu E., Douglas J., Furtado F., Marchesin D., Pereira F.: Three-phase immiscible displacement in heterogeneous petroleum reservoirs. Math. Comput. Simul. 73, 2–20 (2006)

    Article  Google Scholar 

  • Abreu E., Douglas J., Furtado F., Pereira F.: Operator splitting based on physics for flow in porous media. Int. J. Comput. Sci. 2(3), 315–335 (2008)

    Google Scholar 

  • Abreu E., Douglas J., Furtado F., Pereira F.: Operator splitting for three-phase flow in heterogeneous porous media. Commun. Comput. Phys. 6(1), 72–84 (2009)

    Article  Google Scholar 

  • Arbogast T., Pencheva G., Wheeler M., Yotov I.: A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6, 319–346 (2007)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover Publications, Inc., Mineola, NY (1988)

    Google Scholar 

  • Bentsen R., Anli J.: A new displacement capillary pressure model. J. Can. Petrol. Technol. 15(3), 75–79 (1976)

    Google Scholar 

  • Borges M., Furtado F., Pereira F., Amaral Souto H.: Scaling analysis for the tracer flow problem in self-similar permeability fields. SIAM Multiscale Model. Simul. 7(3), 1130–1147 (2008)

    Article  Google Scholar 

  • Carlson M.: Practical Reservoir Simulation. PennWell Corporation, Tulsa, OK (2003)

    Google Scholar 

  • Chavent G.: A new formulation of diphasic incompressible flow in porous media. Lect. Notes Math. 503, 258–270 (1976)

    Article  Google Scholar 

  • Chavent G., Jaffre J.: Mathematical Models and Finite Elements for Reservoir Simulation. North-Holland, Amsterdam (1986)

    Google Scholar 

  • Chen Y., Durlofsky L.: Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–185 (2006)

    Article  Google Scholar 

  • Chen Y., Durlofsky L., Gerritsen M., Wen X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

    Article  Google Scholar 

  • Chen Z., Ewing R.: Comparison of various formulations of three-phase flow in porous media. J. Comput. Phys. 132, 362–373 (1997)

    Article  Google Scholar 

  • Douglas J., Furtado F., Pereira F.: On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs. Comput. Geosci. 1, 155–190 (1997)

    Article  Google Scholar 

  • Douglas J., Pereira F., Yeh L.: A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4(1), 1–40 (2000)

    Article  Google Scholar 

  • Durlofsky L., Efendiev Y., Ginting V.: An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv. Water Resour. 30(3), 576–588 (2007)

    Article  Google Scholar 

  • Efendiev Y., Hou T., Wu X.: Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37, 888–910 (2000)

    Article  Google Scholar 

  • Efendiev Y., Ginting V., Hou T., Ewing R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)

    Article  Google Scholar 

  • Ewing R.: Aspects of upscaling in simulation of flow in porous media. Adv. Water Resour. 20(5–6), 349–358 (1997)

    Article  Google Scholar 

  • Feijóo T., Mazzei L., Quincy J.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  Google Scholar 

  • Freeze A.: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water. Resour. Res. 11(5), 725–741 (1975)

    Article  Google Scholar 

  • Ginting V.: Analysis of two-scale finite volume element method for elliptic problem. J. Numer. Math. 12(2), 119–141 (2004)

    Article  Google Scholar 

  • Hilfer R.: Capillary pressure, hysteresis and residual saturation in porous media. Physica A 359, 119–128 (2006)

    Article  Google Scholar 

  • Holden L., Nielsen B.: Global upscaling of permeability in heterogeneous reservoirs: the Output Least Squares (OLS) method. Transp. Porous. Med. 40, 115–143 (2000)

    Article  Google Scholar 

  • Hou T., Wu X.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  Google Scholar 

  • Isaacson E., Marchesin D., Plohr B.: Transitional waves for conservation laws. SIAM J. Math. Anal. 21, 837–866 (1990)

    Article  Google Scholar 

  • Jenny P., Lee S., Tchelepi H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  Google Scholar 

  • Kurganov A., Tadmor E.: New high-resolution central schemes for nonlinear conservation laws and convection diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  Google Scholar 

  • Larson M., Målqvist A.: Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 2313–2324 (2007)

    Article  Google Scholar 

  • LeVeque R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002)

    Book  Google Scholar 

  • Nessyahu N., Tadmor E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  Google Scholar 

  • Pereira F., Rahunanthan A.: A semi-discrete central scheme for the approximation of two-phase flows in three space dimensions. Math. Comput. Simulat. 81(10), 2296–2306 (2011)

    Article  Google Scholar 

  • Thomeer J.: Introduction of a pore geometrical factor defined by the capillary pressure curve. AIME Tech. Note 2057, 73–77 (1960)

    Google Scholar 

  • Wallstrom T., Hou S., Christie M., Durlofsky L., Sharp D.: Accurate scale up of two phase flow using renormalization fo nonuniform coarsening. Comput. Geosci. 3, 69–87 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Presho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furtado, F., Ginting, V., Pereira, F. et al. Operator Splitting Multiscale Finite Volume Element Method for Two-Phase Flow with Capillary Pressure. Transp Porous Med 90, 927–947 (2011). https://doi.org/10.1007/s11242-011-9824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9824-8

Keywords

Navigation