Skip to main content

Advertisement

Log in

Numerical Simulations of the Thermal Impact of Supercritical CO2 Injection on Chemical Reactivity in a Carbonate Saline Reservoir

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Geological sequestration of CO2 offers a promising solution for reducing net emissions of greenhouse gases into the atmosphere. This emerging technology must make it possible to inject CO2 into deep saline aquifers or oil- and gas-depleted reservoirs in the supercritical state (P > 7.4MPa and T > 31.1°C) to achieve a higher density and therefore occupy less volume underground. Previous experimental and numerical simulations have demonstrated that massive CO2 injection in saline reservoirs causes a major disequilibrium of the physical and geochemical characteristics of the host aquifer. The near-well injection zone seems to constitute an underground hydrogeological system particularly impacted by supercritical CO2 injection and the most sensitive area, where chemical phenomena (e.g. mineral dissolution/precipitation) can have a major impact on the porosity and permeability. Furthermore, these phenomena are highly sensitive to temperature. This study, based on numerical multi-phase simulations, investigates thermal effects during CO2 injection into a deep carbonate formation. Different thermal processes and their influence on the chemical and mineral reactivity of the saline reservoir are discussed. This study underlines both the minor effects of intrinsic thermal and thermodynamic processes on mineral reactivity in carbonate aquifers, and the influence of anthropic thermal processes (e.g. injection temperature) on the carbonates’ behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • André L., Audigane P., Azaroual M., Menjoz A.: Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during supercritical carbon dioxide injection into a carbonated reservoir, the Dogger aquifer (Paris Basin, France). Energy Convers. Manag. 48, 1782–1797 (2007)

    Article  Google Scholar 

  • Azaroual M., Fouillac C., Matray J.M.: Solubility of silica polymorphs in electrolyte solutions, II. Activity of aqueous silica and solid silica polymorphs in deep solutions from the sedimentary Paris Basin. Chem. Geol. 140(3–4), 167–179 (1997)

    Article  Google Scholar 

  • Azaroual, M., Kervévan, C., Durance, M.V., Brochot, S., Durst, P.: SCALE2000 (V3.1): Logiciel de calculs thermodynamiques et cinétiques applicables aux saumures pétrolières, hydrothermales et industrielles (User’s Manual in French). BRGM, ISBN 2-7159-0939-X (2004)

  • Azaroual, M., Pruess, K., Fouillac, C.: Feasibility of using supercritical CO2 as heat transmission fluid in the EGS (Enhanced Geothermal Systems) integrating the carbon storage constraints. In: ENGINE—Enhanced Geothermal Innovative Network for Europe. Workshop 2: Exploring High Temperature Reservoirs: New Challenges for Geothermal Energy, SIAF Campus, Volterra, Italy, 1–4 April 2007

  • Bachu S.: Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into CO2 phase space. Energy Convers. Manag. 43, 87–102 (2002)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  • Bielinski A., Kopp A., Schütt H., Class H.: Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation. Int. J. Greenh. Gas Control 2, 319–328 (2008)

    Article  Google Scholar 

  • Brown, D.: A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, 2000, pp. 233–238

  • Gaus I., Audigane P., André L., Lions J., Jacquemet N., Durst P., Czernichowski-Lauriol I., Azaroual M.: Geochemical and solute transport modelling for CO2 storage, what to expect from it?. Int. J. Greenh. Gas Control 2, 605–625 (2008)

    Article  Google Scholar 

  • Gunter W.D., Perkins E.H., Hutcheon I.: Aquifer disposal of acid gases: modelling of water–rock reactions for trapping of acid wastes. Appl. Geochem. 15(8), 1085–1095 (2000)

    Article  Google Scholar 

  • Helgeson H.C., Kirkham D.H., Flowers G.C.: Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures. 4. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am. J. Sci. 281, 1249–1516 (1981)

    Google Scholar 

  • Intergovernmental Panel on Climate Change: Chapter 5: Underground geological storage. In: Metz, B., et al. (eds.) Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge (2005)

  • Knapp R.B.: Spatial and temporal scales of local equilibrium in dynamic fluid-rock systems. Geochim. Cosmochim. Acta 53(8), 1955–1964 (1989)

    Article  Google Scholar 

  • Koschel D., Coxam J.-Y., Rodier L., Majer V.: Enthalpy and solubility of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration. Fluid Phase Equilib. 247, 107–120 (2006)

    Article  Google Scholar 

  • La Iglesia A., González V., López-Acevedo V., Viedma C.: Salt crystallization in porous construction materials: I. Estimation of crystallization pressure. J. Cryst. Growth 177, 111–118 (1997)

    Article  Google Scholar 

  • Lasaga A.C.: Chemical kinetics of water-rock interactions. J. Geophys. Res. 89(B6), 4009–4025 (1984)

    Article  Google Scholar 

  • Lassin A., Azaroual M., Mercury L.: Geochemistry of unsaturated soil systems: aqueous speciation and solubility of minerals and gases in capillary solutions. Geochim. Cosmochim. Acta 69(22), 5187–5201 (2005)

    Article  Google Scholar 

  • Lu M., Connell L.D.: Non-isothermal flow of carbon dioxide in injection wells during geological storage. Int. J. Greenh. Gas Control 2, 248–258 (2008)

    Article  Google Scholar 

  • Mahadevan, J.: Flow-through drying of porous media. PhD Dissertation, The University of Texas at Austin (2005)

  • Mahadevan J., Sharma M.M., Yortsos Y.C.: Water removal from porous media by gas injection: experiments and simulation. Transp. Porous Med. 66, 287–309 (2007)

    Article  Google Scholar 

  • Marcolini, M., Geloni, C., Battistelli, A., Gherardi, F., Biagi, S.: Near wellbore processes and water-rock reactions driven by the geologic sequestration of dry CO2 in a natural gas layer. Geophysical Research Abstract, 10, EGU2008-A-09323, 5th EGU General Assembly (2008)

  • Michard G., Bastide J.-P.: Etude géochimique de la nappe du Dogger du Bassin de Paris. J. Volcanol. Geotherm. Res. 35, 151–163 (1988)

    Article  Google Scholar 

  • Oldenburg C.M.: Joule–Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Convers. Manag. 48, 1808–1815 (2007)

    Article  Google Scholar 

  • Palandri, J., Kharaka, Y.K.: A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. US Geological Survey Open File Report 2004-1068, p. 64 (2004)

  • Pan L., Oldenburg C.M., Wu Y.S., Pruess K.: Wellbore flow model for carbon dioxide and brine. Energy Procedia 1, 71–78 (2008)

    Article  Google Scholar 

  • Paterson, L., Lu, M., Connell, L.D., Ennis-King, J.: Numerical modelling of pressure and temperature profiles including phase transitions in carbon dioxide wells. In: SPE 115946, Presented at the 2008 SPE Annual Technical Conference and Exhibition in Denver, Colorado, USA, 21–24 September 2008

  • Pettenati M., Mercury L., Azaroual M.: Capillary geochemistry in non-saturated zone of soils. Water content and geochemical signatures. Appl. Geochem. 23, 3799–3818 (2008)

    Article  Google Scholar 

  • Plummer L.N., Busenberg E.: The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 46(6), 1011–1040 (1982)

    Article  Google Scholar 

  • Pruess, K.: Behaviour of CO2 injection wells. In: 3rd Annual Conference on Carbone Capture and Sequestration, Alexandria, VA, 3–6 May 2004

  • Pruess, K.: ECO2n: a TOUGH2 fluid property module for mixtures of water, NaCl and CO2. Lawrence Berkeley National Laboratory Report LBNL-57952, Berkeley, CA, USA (2005)

  • Pruess K.: On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers. Manag. 49, 1446–1454 (2008)

    Article  Google Scholar 

  • Pruess, K., Oldenburg, C.M., Moridis, G.J.: TOUGH2 user’s guide, version 2.0. Lawrence Berkeley National Laboratory Report LBNL-43134, Berkeley, CA, USA (1999)

  • Pruess, K., Azaroual, M.: On the feasibility of using supercritical CO2 as heat transmission fluid in an engineered hot dry rock geothermal reservoir. In: Proceedings of the Thirty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 2006, pp. 386-393

  • Pruess, K.: Modelling of non-isothermal effects in CO2 storage. In: CO2 Geological Storage Modelling Workshop, Orléans, France, 10–12 February 2009

  • Rojas, J., Giot, D., Le Nindre, Y.M., Criaud, A., Fouillac, C., Brach, M., et al.: Caractérisation et modélisation du réservoir géothermique du Dogger, bassin parisien, France. Rapport final CCE, EN 3G-0046-F(CD), BRGM R 30 IRG SGN 89 (1989)

  • Rossi C., Nimmo J.R.: Modeling of soil water retention from saturation to oven dryness. Water Resour. Res. 30, 701–708 (1994)

    Article  Google Scholar 

  • Slider H.C.: Practical Petroleum Reservoir Engineering Methods, p. 559. Petroleum Publishing Company, Tulsa (1976)

    Google Scholar 

  • Spycher N., Pruess K.: CO2-H2O mixtures in the geological sequestration of CO2. II: Partitioning in chloride brines at 12-100°C and up to 600 bars. Geochim. Cosmochim. Acta 69(13), 3309–3320 (2005)

    Article  Google Scholar 

  • Steefel C.I., Lasaga A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with applications to reactive flow in single phase hydrothermal system. Am. J. Sci. 294, 529–592 (1994)

    Google Scholar 

  • Steiger M., Asmussen S.: Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4-H2O and the generation of stress. Geochim. Cosmochim. Acta 72, 4291–4306 (2008)

    Article  Google Scholar 

  • Van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Vidal-Gilbert S., Nauroy J.-F., Brosse E.: 3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin. Int. J. Greenh. Gas Control 3(3), 288–299 (2009)

    Article  Google Scholar 

  • Vinsome P.K.W., Westerveld J.: A simple method for predicting cap and base rock heat losses in thermal reservoir simulators. J. Can. Pet. Technol 19(3), 87–90 (1980)

    Google Scholar 

  • Weir G.J., White S.P., Kissling W.M.: Reservoir storage and containment of greenhouse gases. Transp. Porous Med. 23(1), 37–60 (1996a)

    Google Scholar 

  • Weir G.J., White S.P., Kissling W.M.: Reservoir storage and containment of greenhouse gases: II. Vapour-entry pressures. Transp. Porous Med. 23(1), 61–82 (1996b)

    Google Scholar 

  • White S.P., Allis R.G., Moore J., Chidsey T., Morgan C., Gwynn W., Adams M.: Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA. Chem. Geol. 217, 387–405 (2005)

    Article  Google Scholar 

  • Wolery, T.: EQ3/6: software package for geochemical modelling of aqueous systems: package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory Report UCRLMA-110662 PTI. Livermore, California (1992)

  • Xu T., Pruess K.: Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology. Am. J. Sci. 301, 16–33 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent André.

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, L., Azaroual, M. & Menjoz, A. Numerical Simulations of the Thermal Impact of Supercritical CO2 Injection on Chemical Reactivity in a Carbonate Saline Reservoir. Transp Porous Med 82, 247–274 (2010). https://doi.org/10.1007/s11242-009-9474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9474-2

Keywords

Navigation