Skip to main content

Advertisement

Log in

Prolonged culture of Boesenbergia rotunda cells reveals decreased growth and shoot regeneration capacity

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Boesenbergia rotunda is an important medicinal herb that contains useful bioactive compounds. Although micropropagation of ginger has undergone spectacular development in recent years, gradual loss of plant regeneration capacity in prolonged cell suspension culture continues to be a significant limitation. In this study, biochemical changes and proteins associated with plant totipotency over 9 months of culture for B. rotunda cell suspension culture were investigated. The established cell line B showed 42.2 and 53.8% decrease in growth after 6 and 9 months of culture respectively compared to 0 month-old cells. About 67, 57 and 47% of cell-derived shoot-like-structures for 0, 6 and 9 month-old cells, respectively, regenerated into shoots. The activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) for 6 month-old cells were 14.40 Unit SOD/mg protein, 74.38 µmol H2O2/mg protein, and 2.23 µmol AsA/mg protein, respectively, higher than 0-month-old cells. The difference for hydrogen peroxide (H2O2) content between 0 and 6 month-old cells was 5.27 µmol H2O2/mg protein. While the activities of SOD, H2O2 and APX decreased from 6 to 9 month-old cells, CAT activity was increased. We applied a gel-based proteomic technique to analyze protein changes for 0, 6 and 9 month-old cells. A total of 13 protein spots showed significant differential expression and 8 protein spots were successfully identified. They were classified as protein synthesis, energy metabolism, defense and stress responses, and catabolic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ata N, Yusuf NA, Tan BC, Husaini A, Yusuf YM, Majid NA, Khalid N (2015) Expression profiles of flavonoid-related gene, 4 coumarate: coenzyme A ligase, and optimization of culturing conditions for the selected flavonoid production in Boesenbergia rotunda. Plant Cell Tiss Organ Cult 123:47–55. doi:10.1007/s11240-015-0813-4

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Chang R (2005) Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann Bot 96:507–518. doi:10.1093/aob/mci206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) Article: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Bishop-hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tiss Organ Cult 74:267–281. doi:10.1023/A:1024067703550

    Article  CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. doi:10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 254:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  • Breusegem F Van, Dekeyser R, Gielen J, Montagu M Van, Caplan A (1994) Characterization of a s-adenosylmethionine synthetase gene in rice. Plant Physiol 105:1463–1464. doi:10.1104/pp.105.4.1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bringans S, Eriksen S, Kendrick T, Gopalakrishnakone P, Livk A, Lock R, Lipscombe R (2008) Proteomic analysis of the venom of heterometrus longimanus (asian black scorpion). Proteomics 8:1081–1096. doi:10.1002/pmic.200700948

    Article  CAS  PubMed  Google Scholar 

  • Carter C, Thombur RW (1999) Germin-like proteins: structure, phylogeny, and function. J Plant Biol 42:97–108

    Article  CAS  Google Scholar 

  • Chomchalow N, Jaree B, Craig M (2003) Amazing Thai medicinal plant. Horticultural Research Institute, Department of Agriculture, and Horticultural Science Society of Thailand, Bangkok, pp 28

    Google Scholar 

  • Chuakul W, Boonpleng A (2003) Ethomedical uses of Thai Zingiberaceous plant. Thai J Phys Pharm 10:33–39

    Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav 3:156–165. doi:10.4161/psb.3.3.5536

    Article  Google Scholar 

  • Espartero J, Pintor-Toro JA, Pardo JM (1994) Differential accumulation of s-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25:217–227. doi:10.1007/BF00023239

    Article  CAS  PubMed  Google Scholar 

  • Etienne H, Bertrand B (2003) Somaclonal variation in Coffea arabica: effects of genotype and embryogenic cell suspension age on frequency and phenotype of variants. Tree Physiol 23:419–426

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Biochem Cell Biol 2010:1–23. doi:10.1155/2010/214074

    Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187. doi:10.1007/s00299-004-0822-y

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Carrasco P (1996) Hormonal regulation of s-adenosylmethionine synthase transcripts in pea ovaries. Plant Mol Biol 30:821–832

    Article  PubMed  Google Scholar 

  • Guo Y, Xiong L, Ishitani M, Zhu J-K (2002) An arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc Natl Acad Sci USA 99:7786–7791. doi:10.1073/pnas.112040099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Holmstrom D (2005) Double staining technology for distinguishing embryogenic cultures. In: Mohan S, Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Netherlands, pp 573–575

    Chapter  Google Scholar 

  • Hoa YJ, Wen XP, Deng XX (2004) Genetic and epigenetic evaluations of citrus calluses recovered from slow-growth culture. J Plant Physiol 4:479–484. doi:10.1078/0176-1617-01102

    Article  Google Scholar 

  • Hossain Z, Komatsu S (2012) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310. doi:10.3389/fpls.2012.00310

    PubMed  Google Scholar 

  • Isa NM, Abdelwahab SI, Mohan S et al (2012) In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.) (fingerroot). Braz J Microbiol 45:524–530. doi:10.1590/S0100-879X2012007500022

    Article  CAS  Google Scholar 

  • Jalil M, Khalid N, Othman RY (2003) Plant regeneration from embryogenic suspension cultures of Musa accumunata cv. Mas (AA). Plant Cell Tiss Organ Cult 75:209–214. doi:10.1023/A:1025814922547

    Article  CAS  Google Scholar 

  • Jing LJ, Mohamed M, Rahmat A, Bakar MFA (2010) Phytochemicals, antioxidant properties and anticancer investigations of the different parts of several gingers species (Boesenbergia rotunda, Boesenbergia pulchella var attenuata and Boesenbergia armeniaca). J Med Plants Res 4:27–32. doi:10.5897/JMPR09.308

    CAS  Google Scholar 

  • Jitvaropas R, Saenthaweesuk S, Somparn N, Thuppin A, Sireeratawong S, Phoolcharoen W (2012) Antioxidant, antimicrobial and wound healing activities of Boesenbergia rotunda. Nat Prod Commun 7:909–912 http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L365387642%5Cn http://members.naturalproduct.us/Secure/ViewDoc.aspx?docId=4682%5Cn http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=1934578X&id=doi:&atitle=Antioxidant,+antimicrobial+and+w

    CAS  PubMed  Google Scholar 

  • Junglee S, Urban L, Sallanon H, Lopez-lauri F (2014) Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am J Anal Chem 5:730–736. doi:10.4236/ajac.2014.511081

    Article  CAS  Google Scholar 

  • Junker VLL, Apweiler R, Bairoch A (1999) Representation of functional information in the SWISS-PROT data bank. Bioinformatics 15:1066–1067

    Article  CAS  PubMed  Google Scholar 

  • Kadir SLA, Yaakob H, Mohamed Zulkifli R (2013) Potential anti-dengue medicinal plants: a review. J Nat Med 67:677–689. doi:10.1007/s11418-013-0767-y

    Article  Google Scholar 

  • Kane ME, Davis GL, McConnell DB, Gargiulo JA (1999) In vitro propagation of Cryptocoryne wendtii. Aquat Bot 63:197–202. doi:10.1016/S0304-3770(99)00006-6

    Article  Google Scholar 

  • Karuppanapandian T, Moon J, Kim C (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725. http://www.cropj.com/kim_5_6_2011_709_725.pdf. Accessed 13 Mar 2015

  • Klok EJ, Wilson IW, Wilson D et al (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494. doi:10.1105/tpc.004747.anaerobiosis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Kamal AHM, Hossain Z (2014) Wheat proteomics: proteome modulation and abiotic stress acclimation. Front Plant Sci 5:1–19. doi:10.3389/fpls.2014.00684

    Article  Google Scholar 

  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54. doi:10.1007/s13205-016-0389-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329. doi:10.1104/pp.106.079004.ROS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowska A, Zebrowski J, Oklejewicz B, Czarnik J, Halibart-Puzio J, Wnuk M (2014) The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation. Biochem Biophys Res Commun 447:285–291. doi:10.1016/j.bbrc.2014.03.141

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zachgo S (2009) Glutaredoxins in development and stress responses of plants. In: Jacquot J-P (ed) Advances in botanical research, 1st edn. vol 52. Elsevier Ltd, Atlanta, pp 335–356

    Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. an overview. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Switzerland, pp 1–8

    Chapter  Google Scholar 

  • Maraschin SF, Priester Wde, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726. doi:10.1093/jxb/eri190

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309. doi:10.1016/j.tplants.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobaoco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Musrati RA, Kollárová M, Mernik N, Mikulášová D (1998) Malate dehydrogenase: distribution, function and properties. Gen Physiol Biophys 17:193–210

    CAS  PubMed  Google Scholar 

  • Mustafa NR, Winter WD, Iren FV, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cutures. Nat Protoc 6:715–742. doi:10.1038/nprot.2010.144

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbato specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nakano M, Sakakibara T, Suzuki S, Saito H (2000) Decrease in the regeneration potential of long-term cell suspension cultures of Lilium formosanum Wallace and its restoration by the auxin transport inhibitor, 2,3,5-triiodobenzoic acid. Plant Sci 158:129–137. doi:10.1016/S0168-9452(00)00313-7

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749. doi:10.1016/j.bbabio.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  • Oh M, Komatsu S (2015) Characterization of proteins in soybean roots under flooding and drought stresses. J Proteomics 114:161–181. doi:10.1016/j.jprot.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Pádua MS, Paiva LV, Silva LCD, Livramento KGD, Alves L, Castro AHF (2014) Morphological characetristics and cell viability of coffee plants calli. Cience Rural 44:660–665. doi:10.1590/S0103-84782014000400014

    Article  Google Scholar 

  • Pandey P, Singh J, Achary VM, Reddy MK (2015) Redox homeostasis via gene families of ascorbate-glutathione pathway. Front Environ Sci 3:1–14. doi:10.3389/fenvs.2015.00025

    Article  Google Scholar 

  • Paradiso A, Caretto S, Leone A, Bove A, Nisi R, Gara LD (2016) ROS production and scavenging under anoxia and re-oxygenation in Arabidopsis cells: a balance between redox signaling and impairment. Front Plant Sci 7:1–11. doi:10.3389/fpls.2016.01803

    Article  Google Scholar 

  • Patil RS, Davey MR, Power JB, Cocking EC (2003) Development of long-term cell suspension cultures of wild tomato species, Lycopersicon chilense dun. As regular source of protoplast: an efficient protoplast-to-plant system. Indian J Biotechnol 2:504–511

    CAS  Google Scholar 

  • Pola S, Mani N, Ramana T (2009) Long-term maintenance of callus cultures from immature embryo of Sorghum bicolor. World J Agric Sci 5:415–421. http://www.idosi.org/wjas/wjas5(4)/6.pdf. Accessed 2 Apr 2014

  • Rao AM, Kumar IS, Kishor PBK (2012) Effect of growth regulators and physiological gradients on the high frequency plant regeneration from the long-term callus cultures of different germplasms of rice (Oryza sativa L). J Phytol 4:6–15

    Google Scholar 

  • Ristic Z, Bukovnik U, Momčilović I, Fu J, Prasad V (2008) Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J Plant Physiol 165:192–202. doi:10.1016/j.jplph.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  • Rivoal J, Thind S, Pradet A, Ricard B (1997) Differential induction of pyruvate decarboxylase subunits and transcripts in anoxic rice seedlings. Plant Physiol 114:1021–1029. doi:10.1104/pp.114.3.1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19. doi:10.1007/s11738-013-1402-y

    Article  CAS  Google Scholar 

  • Seran TH (2013) In vitro propagation of ginger (Zingiber officinale Roscoe): a review. Pak J Biol Sci 16:1826–1835. doi:10.3923/pjbs.2013.1826.1835

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/2012/217037

    Article  Google Scholar 

  • Silva LC, Paiva R, Silva DPCD, Barbosa S, Herrera RC, Davide LC, Paiva PDDO (2012) Characterization of pro-embryogenic calli and somatic embryogenesis of Byrsonima intermedia A. Juss. J Agr Sci Technol 2012:962–970

    Google Scholar 

  • Stroeher E, Grassl J, Carrie C, Fenske R, Whelan J, Millar AH (2015) Glutaredoxin S15 is involved in Fe–S cluster transfer in mitochondria influencing lipoic acid-dependent enzymes, plant growth and arsenic tolerance in Arabidopsis. Plant Physiol 170:1284–1299. doi:10.1104/pp.15.01308

    Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43. doi:10.1111/nph.12797

    Article  PubMed  Google Scholar 

  • Tan BC, Chin CF, Liddell S, Alderson P (2013) Proteomic analysis of callus development in Vanilla planifolia Andrews. Plant Mol Biol Rep 31:1220–1229

    Article  CAS  Google Scholar 

  • Tan HC, Tan BC, Wong SM, Khalid N (2016) A medicinal ginger, Boesenbergia rotunda: from cell suspension cultures to protoplast derived callus. Sains Malaysiana 5:795–802

    Google Scholar 

  • Teotia S, Singh D (2014) Oxidative stress in plants and its management. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 227–254

    Chapter  Google Scholar 

  • Tomaz T, Lee CP, Bagard M et al (2010) Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol 154:1143–1157. doi:10.1104/pp.110.161612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-D, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ (2011) Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot London 107:599–609. doi:10.1093/aob/mcq269

    Article  Google Scholar 

  • Wong SM, Salim N, Harikrishna JA, Khalid N (2013) Highly efficient plant regeneration via somatic embryogenesis from cell suspension cultures of Boesenbergia rotunda. In Vitro Cell Dev-Plant 49:665–673. doi:10.1007/s11627-013-9570-4

    Article  CAS  Google Scholar 

  • Xu K, Chang Y, Zhang Y et al (2016) Rorippa indica Regeneration via somatic embryogenesis involving frog egg-like bodies efficiently induced by the synergy of salt and drought stresses. Sci Rep 6:1–7. doi:10.1038/srep19811

    Article  Google Scholar 

  • Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of protein compatible with matrix-associated laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672. doi:10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Yuliana ND, Budijanto S, Verpoorte R, Choi YH (2013) NMR metabolomics for identification of adenosine A1 receptor binding compounds from Boesenbergia rotunda rhizomes extract. J Ethnopharmacol 150:95–99. doi:10.1016/j.jep.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  • Yusuf NA, Annuar MSM, Khalid N (2011) Rapid micropropagation of Boesenbergia rotunda (L.) Mansf. Kulturpfl. (a valuable medicinal plant) from shoot bud explants. Afr J Biotechnol 10:1194–1199. doi:10.5897/AJB10.1432

    CAS  Google Scholar 

  • Yusuf NA, Annuar MSM, Khalid N (2012) Physical stress for overproduction of biomass and flavonoids in cell suspension cultures of Boesenbergia rotunda. Acta Physiol Plant 35:1713–1719. doi:10.1007/s11738-012-1178-5

    Article  Google Scholar 

  • Yusuf NA, Annuar MSM, Khalid N (2013) Existence of bioactive flavonoids in rhizomes and plant cell cultures of Boesenbergia rotunda (L.) Mansf. Kulturpfl. Aust J Crop Sci 7:730–734. http://www.cropj.com/khalid_7_6_2013_730_734. Accessed 2 Jan 2014

  • Zainin NS, Lau KY, Zakaria M, Son R, Abdull Razis AF, Rukayadi Y (2013) Antibacterial activity of Boesenbergia rotunda (L.) Mansf. A. extract against Escherichia coli. Int Food Res J 20:3319–3323

    Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13:1–9. doi:10.2225/vol13-issue1-fulltext-4

    Article  Google Scholar 

  • Zheng S, Henken B, Sofiari E et al (1999) Effect of cytokinins and lines on plant regeneration from long-term callusand suspension cultures of Allium cepa L. Euphytica 108:83–90. doi:10.1023/A:1003652211389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by University Teknologi MARA (UiTM) under Grants 600RMI/RAGS5/3(193/2012) and 600RMI/FRGS5/3(84/2015), the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, under Escience Grant (02-01-03-SF0999) and University of Malaya under CEBAR RU Grant (RU015-2015, PV022-2016 and PV005-2017).

Author contributions

NZK, BCT and NAY conceived the idea, designed the experiments and edited the manuscript. AFZ conducted the experiments and wrote the manuscript. AFZ and BCT analyzed the data. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nor Azma Yusuf or Norzulaani Khalid.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2017_1201_MOESM1_ESM.tif

Supplementary figure 1Proteins selected for mass spectrometry analysis and changes of protein abundance over 0–9 month-old cell suspension cultures (TIF 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, A.F., Yusuf, N.A., Tan, B.C. et al. Prolonged culture of Boesenbergia rotunda cells reveals decreased growth and shoot regeneration capacity. Plant Cell Tiss Organ Cult 130, 25–36 (2017). https://doi.org/10.1007/s11240-017-1201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1201-z

Keywords

Navigation