Skip to main content
Log in

A non-antibiotic selection strategy uses the phosphomannose-isomerase (PMI) gene and green fluorescent protein (GFP) gene for Agrobacterium-mediated transformation of Prunus domestica L. leaf explants

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

We developed an efficient system for agrobacterial transformation of plum (Prunus domestica L.) leaf explants using the PMI/mannose and GFP selection system. The cultivar ‘Startovaya’ was transformed using Agrobacterium tumefaciens strain CBE21 carrying the vector pNOV35SGFP. Leaf explants were placed onto a nutrient medium containing various concentrations and combinations of mannose and sucrose to develop an efficient selection system. Nine independent transgenic lines of plum plants were obtained on a regeneration medium containing 20 g/L sucrose and 15 g/L mannose. The highest transformation frequency (1.40 %) was produced using a delayed selection strategy. Starting from the 1st days after transformation and ending by regeneration of shoots from the transgenic callus, selection of transgenic cells was monitored by GFP fluorescence that allowed avoiding formation of escapes. Integration of the manA and gfp transgenes was confirmed by PCR and Southern blotting. The described transformation protocol using a positive PMI/mannose system is an alternative selection system for production of transgenic plum plants without genes of antibiotic and herbicide resistance, and the use of leaf explants enables retention of cultivar traits of plum plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ballester A, Cervera M, Peña L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Boscariol RL, Almeida WAB, Derbyshire MTVC, Mourão-Filho FAA, Mendes BMJ (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 22:122–128

    Article  CAS  PubMed  Google Scholar 

  • Briza J, Pavingerova D, Prikrylova P, Gazdova J, Vlasak J, Niedermeierova H (2008) Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformation of tomato and potato. Biol Plantarum 52:453–461

    Article  CAS  Google Scholar 

  • Csanyi M, Wittner A, Nagy A, Balla I, Vertessy J, Palkovics L, Balazs E (1999) Tissue culture of stone fruit plants basis for their genetic engineering. J Plant Biotechnol 1:91–95

    Google Scholar 

  • da Câmara Machado ML, da Câmara Machado A, Hanzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp, Kalthoff B, Katinger H (1992) Regeneration of transgenic plants of Prunus armenica containing the coat protein gene of plum pox virus. Plant Cell Rep 11:25–29

    Article  Google Scholar 

  • Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156

    Article  CAS  PubMed  Google Scholar 

  • Dolgov S (2000) Genetic transformation of Sour Cherry (Cerasus vulgaris Mill.). In: Bajaj Y (ed) Biotechnology in agriculture and forestry. Transgenic trees. Springer, Berlin, pp 29–37

    Google Scholar 

  • Duan Y, Zhai C, Li H, Li J, Mei W, Gui H, Ni D, Song F, Li L, Zhang W, Yang J (2012) An efficient and high-throughput protocol for Agrobacterium mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.) Plant Cell Rep 31:1611–1624

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2013) http://faostat3.fao.org Accessed 01 Mar 2016

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005) Agrobacterium-tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3(6):591–599

    Article  CAS  PubMed  Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Pena L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Gonzalez Padilla IM, Webb K, Scorza R (2003) Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant Cell Rep 22:38–45

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Ma J, Yuan B, Zhou M, Wu Y (2015) High-efficiency Agrobacterium-mediated transformation of Lotus corniculatus L. using phosphomannose isomerase positive selection. Plant Cell Tissue Organ Cult 121:413–422

    Article  CAS  Google Scholar 

  • Gutiérrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock “Colt” (Prunus avium x P. pseudocerasus) mediated by pRi 1855T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    Article  Google Scholar 

  • He Z, Duan Z, Liang W, Chen F, Yao W, Liang H, Yue C, Sun Z, Chen F, Dai J (2006) Mannose selection system used for cucumber transformation. Plant Cell Rep 25(9):953–958

    Article  CAS  PubMed  Google Scholar 

  • Jacoboni A, Standardi A (1982) La moltiplicazione “in vitro” del melo cv. Wellspur. Rivista della Ortoflorofrutticoltura italiana 66:217–229

    Google Scholar 

  • Joersbo M, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Liu X, Pijut PM (2010) Agrobacterium-mediated transformation of mature Prunus serotina (black cherry) and regeneration of transgenic shoots. Plant Cell Tissue Organ Cult 101:49–57

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breeding 7:43–49

    Article  CAS  Google Scholar 

  • Mante S, Scorza R, Cordts JM (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica and Prunus cerasus. Plant Cell Tissue Organ Cult 19:1–11

    Article  CAS  Google Scholar 

  • Mante S, Morgens PH, Scorza R, Cordts JM, Callahan AM (1991) Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Nat Biotechnol 9:853–857

    Article  CAS  Google Scholar 

  • Marimaran P, Ramkumar G, Sakthivel K, Sundaram R, Madhav M, Balachandran S (2011) Suitability of non-lethal marker-free systems for development of transgenic crop plants: presents status and future prospects. Biotechnol Adv 29:703–714

    Article  Google Scholar 

  • Mikhailov RV, Dolgov SV (2007) Transgenic plum (Prunus domestica L.) plants obtained by Agrobacterium-mediated transformation of leaf explants with various selective agents. Acta Hortic 738:613–623

    Article  Google Scholar 

  • Mikhailov RV, Muratova SA, Dolgov SV (2007) Production of transgenic plum plants from vegetative tissues by means of positive selection. Acta Hortic 734:129–138

    Article  CAS  Google Scholar 

  • Mikhailov R, Firsov A, Shulga O, Dolgov S (2012) Transgenic plums (Prunus domestica L.) of ‘Startovaya’ express the plum pox virus coat protein gene. Acta Hortic 929:445–450

    Article  Google Scholar 

  • Millwood R, Moon H, Neal Stewart C Jr (2010) Fluorescent Proteins in Transgenic Plants. In: Geddes C (ed) Reviews in fluorescence 2008. Springer, New York, pp 387–403

  • Miroshnichenko D, Filippov M, Dolgov S (2007) Genetic transformation of Russian wheat cultivars. Biotechnol Biotec Equip 4:399–402

    Article  Google Scholar 

  • Monticelli S, Di Nicola-Negri E, Gentile A, Damiano C, Ilardi V (2012) Production and in vitro assessment of transgenic plums for resistance to plum pox virus: a feasible, environmental risk-free, cost-effective approach. Ann Appl Biol 161:293–301

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth bio assays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagel AK, Scorza R, Petri C, Schnabel G (2008) Generation and characterization of transgenic plum lines expressing the Gastrodia antifungal protein. HortScience 43:1514–1521

    Google Scholar 

  • Nowak B, Miczynski K, Hudy L (2004) Sugar uptake and utilisation during adventitious bud differentiation on in vitro leaf explants of ‘Wegierka Zwykla’ plum (Prunus domestica). Plant Cell Tissue Org 76:255–260

    Article  CAS  Google Scholar 

  • Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Padilla IMG, Golis A, Gentile A, Damiano C, Scorza R (2006) Evaluation of transformation in peach (Prunus persica) explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tissue Org Cult 84:309–314

    Article  CAS  Google Scholar 

  • Perez-Clemente RM, Perez-Sanjuan A, Garcia-Ferriz L, Beltran JP, Canas LA (2004) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol Breeding 14:419–427

    Article  CAS  Google Scholar 

  • Perez-Jimenez M, Carrillo-Navarro A, Cos-Terrer J(2012) Regeneration of peach (Prunus persica L. Batsch) cultivars and Prunus persica × Prunus dulcis rootstocks via organogenesis. Plant Cell Tissue Org Cult 108:55–62

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26

    Article  CAS  PubMed  Google Scholar 

  • Petri C, Scorza R (2010) Factors affecting adventitious regeneration from in vitro leaf explants of Improved French plum, the most important dried plum cultivar in the USA. Ann Appl Biol 156:79–89

    Article  CAS  Google Scholar 

  • Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008a) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27:1317–1324

  • Petri C, Webb K, Hily J-M, Dardick C, Scorza R (2008b) High transformation efficiency in plum (Prunus domestica L.): A new tool for functional genomics in Prunus spp. Mol Breeding 22:581–591

  • Petri C, Hily JM, Vann C, Dardick C, Scorza R (2011) A high-throughput transformation system allows the regeneration of marker-free plum plants (Prunus domestica). Ann Appl Biol 159:302–315

    Article  Google Scholar 

  • Petri C, Lopez-Noguera S, Wang H, Garcia-Almodovar C, Alburquerque N, Burgos L (2012) A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell Tissue Org Cult 110:337–346

    Article  CAS  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821–828

    Article  CAS  PubMed  Google Scholar 

  • Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang Y-F, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol-Plant 37:127–132

    Article  CAS  Google Scholar 

  • Revenkova EV, Kraev AS, Skryabin KG (1993) Construction of a disarmed derivative of the supervirulent Ti plasmid pTiBo542. In: Skryabin KG (ed) Plant biotechnology and molecular biology. Pushchino Research Centre, Moscow, pp 67–76

    Google Scholar 

  • Righetti L, Djennane S, Berthelot P, Cournol R, Wilmot N, Loridon K, Vergne E, Chevreau E (2014) Elimination of the nptII marker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase. Plant Cell Tissue Org Cult 117:335–348

    Article  CAS  Google Scholar 

  • Rogers S, Bendich A (1995) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin S, Schiperoort R (eds) Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht (Section 7–1)

    Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plum (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep 14:18–22

    Article  CAS  PubMed  Google Scholar 

  • Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, Milligan S, Lawton K, Hohn T (2003) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53:703–713

    Article  Google Scholar 

  • Stewart CN (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep 20:376–382

    Article  CAS  PubMed  Google Scholar 

  • Stoykova P, Stoeva-Popova P (2011) PMI (manA) as a nonantibiotic selectable marker gene in plant biotechnology. Plant Cell Tissue Org Cult 105:141–148

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Hsu W-H, Yang C-H (2011) Phosphomannose-isomerase as a selectable marker to recover transgenic orchid plants (Oncidium Gower Ramsey). Plant Cell Tissue Org Cult 104:239–246

    Article  CAS  Google Scholar 

  • Tian L, Canli FA, Wang X, Sibbald S (2009) Genetic transformation of Prunus domestica L. using the hpt gene coding for hygromycin resistance as the selectable marker. Sci Hort 119:339–343

    Article  CAS  Google Scholar 

  • Wallbraun M, Sonntag K, Eisenhauer C, Krzcal G, Wang YP(2009) Phosphomannose – isomerase (pmi) gene as a selectable marker for Agrobacterium – mediated transformation of rapeseed. Plant Cell Tissue Org Cult 99:345–351

  • Wang H, Petri C, Burgos L, Alburquerque N (2013) Phoshomannose-isomerase as a selectable marker for transgenic plum (Prunus domestica L.) Plant Cell Tissue Org Cult 133:189–197

    Article  Google Scholar 

  • Wright M, Dawson J, Suttiue J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  • Zhang S, Zhu L-H, Li X-Y, Ahlman A, Welander M (2004) Infection by Agrobacterium tumefaciens increased the resistance of leaf explants to selective agents in carnation (Dianthus caryophyllus L. and D. chinensis). Plant Sci 168:137–144

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation, Grant No 14-50-00079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Sidorova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

T. Sidorova and R. Mikhailov have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2016_1100_MOESM1_ESM.docx

Supplementary material 1 Supplementary Fig. 1 Intensity of GFP fluorescence in leaves of nine independent transgenic plum lines (left) compared to control (right). Leaves were taken from 5-year-old plum trees growing in greenhouse. a leaves under ultraviolet light (GFP plant filter); b leaves under daylight (DOCX 1444 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorova, T., Mikhailov, R., Pushin, A. et al. A non-antibiotic selection strategy uses the phosphomannose-isomerase (PMI) gene and green fluorescent protein (GFP) gene for Agrobacterium-mediated transformation of Prunus domestica L. leaf explants. Plant Cell Tiss Organ Cult 128, 197–209 (2017). https://doi.org/10.1007/s11240-016-1100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1100-8

Keywords

Navigation