Skip to main content

Advertisement

Log in

In vitro tissue culture in breeding programs of leguminous pulses: use and current status

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Legumes represent a vast family of plants including more than 600 genera and more than 13,000 species. Among them, the term “pulses” refers only to dried seed crops, excluding those grown mostly for oil extraction (like soybean), where dried peas, edible beans, lentils, chickpeas, cowpea, mungbean, blackgram and pigeonpea are the most common cultivated ones for human consumption due to their high nutritional value. They also have the ability of fixing nitrogen into the soil with symbiotic bacteria, which reduces the need for chemical fertilizers in crop rotations. Conventional breeding methods for pulses are laborious and time-consuming before the release of new genotypes. Thus, alternative biotechnological approaches may be advantageous in this area. Tissue culture, plant regeneration strategies, gene transfer and plant transformation are studied in these pulses. Also, anther, microspore, embryo and ovary culture and their opportunity of application in these pulses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aasim M, Khawar KM, Özcan S (2010) Efficient in vitro propagation from preconditioned embryonic axes of turkish cowpea (Vigna unguiculata L.) cultivar Akkiz. Arch Biol Sci 62 (4):1047–1052. doi:10.2298/ABS1004047A1047

    Article  Google Scholar 

  • Aasim M, Day S, Rezaei F, Hajyzadeh M, Mahmud ST, Ozcan S (2011) In vitro shoot regeneration from preconditioned explants of chickpea (Cicer arietinum L.) cv. Gokce. Afr J Biotechnol 10:2020–2023. doi:10.5897/AJB10.823

    CAS  Google Scholar 

  • Aasim M, Day S, Rezaei F, Hajyzadeh M (2013) Multiple shoot regeneration of plumular apices of chickpea. Turk J Agric For 37:33–39. doi:10.3906/tar-1204-38

    CAS  Google Scholar 

  • Abiri R, Valdiani A, Maziah M, Shaharuddin Noor A, Sahebi M, Balia Yusof Z, Norhana, Atabaki N, Talei D (2014) A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 18:21–42

    Google Scholar 

  • Aboshama HMS (2011) Somatic embryogenesis proliferation, maturation and germination in Cajanus cajan. World J Agric Sci 7(1):86–95

    CAS  Google Scholar 

  • Adlinge PM, Samal KC, Kumara Swamy RV, Rout GR (2014) Rapid in vitro plant regeneration of black gram (Vigna mungo L. Hepper) Var. Sarala, an important legume crop. Proc Natl Acad Sci India Sect B Biol Sci 84(3):823–827. doi:10.1007/s40011-013-0281-8

    Article  Google Scholar 

  • Ahmed Z, Akhter F, Haque MS, Banu H, Rahman MM, Faruquzzaman AKM (2001) Novel micropropagation system. J Biol Sci 1:1106–1111. doi:10.3923/jbs.2001.1106.1111

    Article  Google Scholar 

  • Akibode S, Maredia M (2011) Global and regional trends in production, trade and consumption of food legume crops. Report submitted to CGIAR special panel on impact assessment, 27 March 2011, pp 83

  • Ali Z, Ullah N, Naseem S, Inam-Ul-Haq M, Jacobsen H J (2015) Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter. Turk J Bot 39:962–972. doi:10.3906/bot-1505-50

    Article  CAS  Google Scholar 

  • Almaghrabi AO (2014) Effect of growth hormone 2,4-D on some callus traits of different faba bean (Vicia faba L.) cultivars. Life Sci J 11:98–102. doi:10.1371/journal.pone.0127401

    CAS  Google Scholar 

  • Anwar F, Alghamdi SS, Ammar MH, Siddique KHM (2011) An efficient in vitro regeneration protocol for faba bean (Vicia faba L.). J Med Plants Res 5(28):6460–6467. doi:10.5897/JMPR11.146

    CAS  Google Scholar 

  • Aragão FJL, Barros LMG, Brasileiro ACM, Ribero SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150. doi:10.1007/BF00225739

    Article  PubMed  Google Scholar 

  • Arellano J, Fuentes SI, Castillo-España P, Hernandez G (2009) Regeneration of different cultivars of common bean († Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell Tissue Organ Cult 96:11–18. doi:10.1007/s11240-008-9454-1

    Article  CAS  Google Scholar 

  • Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. In: Lüttge U et al (eds) Progress in botany 74, Springer-Verlag, Berlin Heidelberg, pp 37–100. doi:10.1007/978-3-642-30967-0_2

    Google Scholar 

  • Bagheri A, Ghasemi Omraan V, Hatefi S (2012) Indirect in vitro regeneration of lentil (Lens culinaris Medik.) J Plant Mol Br 1:43–50

    Google Scholar 

  • Bahgat S, Shabban OA, El-Shihy O, Lightfoot DA, El-Shemy HA (2009) Establishment of the regeneration system for Vicia faba L. Curr Issues Mol Biol 11:47–54

    Google Scholar 

  • Banu TA, Sarkerb RH, Hoqueb MI (2011) In vitro plant regeneration of four local varieties of chickpea (Cicer arietinum L.) grown in Bangladesh. Bangladesh J Sci Ind Res 46:379–384. doi:10.3329/bjsir.v46i3.9047

    Article  CAS  Google Scholar 

  • Barikissou E, Baudoin J (2011) Refinement of an in vitro culture technique for the rescue of globular embryos using microcutting for P. vulgaris L. and P. coccineus L. Tropicultura 29:218–224

    Google Scholar 

  • Barker S, Ping S, Hodgson L, Ferguson-Hunt M et al (2016) Regeneration selection improves transformation efficiency in narrow-leaf lupin. Plant Cell Tissue Org Cult. doi:10.1007/s11240-016-0992-7 (in press)

    Google Scholar 

  • Barraza A, Cabrera-Ponce JL, Gamboa-Becerra R, Luna-Martínez F, Winkler R, Álvarez-Venegas R (2015) The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean. Front Plant Sci 6:577. doi:10.3389/fpls.2015.00577

    Article  PubMed  PubMed Central  Google Scholar 

  • Battistelli GM, Von Pinho RG, Justus A, Couto, EGO, Balestre, M (2013) Production and identification of doubled haploids in tropical maize. Genet Mol Res 12:4230–4242. doi:10.4238/2013

    Article  CAS  PubMed  Google Scholar 

  • Bermejo C (2015) Herramientas biotecnológicas en la mejora de lenteja (Lens culinaris Medik) para su producción sustentable. Doctoral Dissertation, University of Rosario. Rosario

  • Bermejo C, Espósito M, Cravero V, López Anido F, Cointry E (2012) In vitro plant regeneration from cotyledonary nodes of recombinant inbred lines of lentil. Sci Hortic 134:13–19. doi:10.1016/j.scienta.2011.11.029

    Article  CAS  Google Scholar 

  • Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Organ Cult. doi:10.1007/s11240-016-1065-7

    Google Scholar 

  • Bhojwani SS, Dantu PK (2010) Haploid plants. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley-Blackwell, Chichester, pp 60–78

    Google Scholar 

  • Bobkov S. (2014) Obtaining calli and regenerated plants in anther cultures of pea. Czech J Genet Plant Breed 50:123–129

    Google Scholar 

  • Bohanec B (2009) Doubled haploids via gynogenesis. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer-Verlag, Berlin, pp 35–46

    Chapter  Google Scholar 

  • Böhmer P, Meyer B, Jacobsen H-J (1995) Thidiazuron-induced high frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep 15:26–29. doi:10.1007/BF01690247

    Article  PubMed  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EOPL, Mendes E´ A, Aragão FJL (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726. doi:10.1094/MPMI-20-6-0717

    Article  CAS  PubMed  Google Scholar 

  • Böttinger P, Steinmetz A, Schieder O, Pickardt T(2001) Agrobacterium-mediated transformation of Vicia faba. Mol Breed 8:243–254. doi:10.1023/A:1013711210433

    Article  Google Scholar 

  • Bregitzer P, Brown RH (2013) Long-term assessment of transgene behavior in barley: Ds-mediated delivery of bar results in robust, stable, and heritable expression. In Vitro Cell Dev Biol Plant 49:231–239. doi:10.1007/s11627-013-9507-y

    Article  CAS  Google Scholar 

  • Brown J, Caligari PDS, Campos HA (2014) Contemporary approaches in plant breeding. In: Blacwell W (ed) Plant breeding, 2nd ed, pp 185–197

  • Burr B, Burr FA, Thompson, KH, Alberston MC, Stubber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526. http://www.genetics.org/content/118/3/519.full.pdf. Accessed 25 May 2016

  • Cabrera-Ponce JL, López L, León-Ramírez CG, Jofre-Garfias AE, Verver-y-Vargas A (2014) Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L. Protoplasma 252:559–570. doi:10.1007/s00709-014-0702-4

    Article  PubMed  Google Scholar 

  • Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151:970–977. doi:10.1104/pp.109.144659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo BM, de la O RJL, Gallardo JOM, Iturriaga G (2015) In vitro plants of common bean (Phaseolus vulgaris L.) obtained by direct organogenesis. J Agric Sci 7(11):169–179

    Google Scholar 

  • Çeliktaş N, Tiryakioğlu M, Can E, Kutlay D, Hatipoğlu R (2015) Production of dihaploids in durum wheat using Imperata cylindrica L. mediated chromosome elimination. Turk J Agric For 39:48–54. doi:10.3906/tar-1405-111

    Article  Google Scholar 

  • Chandel SCR, Pandey SK (2014) Effect of N6-benzylaminopurine and adenine sulphate in in vitro plant regeneration of Phaseolus vulgaris L. Int J Curr Microbiol App Sci 3(12):801–806

    Google Scholar 

  • Chen JF, Cui L, Malik AA, Mbira KG (2011) In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell Tissue Organ Cult 104:311–319. doi:10.1007/s11240-010-9874-6

    Article  Google Scholar 

  • Chhabra G, Chaudhary D, Varma M, Sainger M, Jaiwal PK (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plant 14:347–353. doi:10.1007/s12298-008-0033-z

    Article  CAS  Google Scholar 

  • Chopra R, Prabhakar A, Saini R (2011) The role of thidiazuron on somatic embryogenesis in lentil (Lens culinaris Medik). Ann Agri Bio Res J Agri Bio Res 16:1–5

    Google Scholar 

  • Citadin CT, Abdulrazak BI, Aragao FJL (2011) Genetic engineering in cowpea (Vigna unguiculata) history, status and prospects. GM Crops 2(3):1–6. doi:10.4161/gmcr.2.3.18069

    Article  Google Scholar 

  • Citadin CT, Cruz ARR, Aragão FJL (2013) Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Rep 32:537–543. doi:10.1007/s00299-013-1385-6

    Article  CAS  PubMed  Google Scholar 

  • Clarke HJ, Kumari M, Khan TN, Siddique KHM (2011a) Poorly formed chloroplasts are barriers to successful interspecific hybridization in chickpea following in vitro embryo rescue. Plant Cell Tissue Organ Cult 106:465–473. doi:10.1007/s11240-011-9944-4

  • Clarke JL, Daniel H, Nugent JM (2011b) Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions. Plant Mol Biol 76:207–209. doi:10.1007/s11103-011-9792-y

  • Clements J, Prilyuk L, Quealy J, Francis G (2008). Interspecific crossing among the New World lupin species for Lupinus mutabilis crop improvement. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, Fremantle, Western Australia, pp 324–327

  • Collado R, García LR, Angenon G, Torres D, Romero C, Bermúdez I, Veitía N (2011) Formación de embriones somáticos a partir de cotiledones inmaduros en Phaseolus vulgaris cv. CIAP 7247. Biotecnol Veg 11:235–240.

    Google Scholar 

  • Colpaert N, Tilleman S, Van Montagu M (2008) Composite Phaseolus vulgaris plants with transgenic roots as research tool. Afr J Biotechnol 7:404–408. doi:10.5897/AJB

    CAS  Google Scholar 

  • Comai L (2014) Genome elimination: translating basic research into a future tool for plant breeding. PLoS Biol 12:e1001876. doi:10.1371/journal.pbio.1001876 (eCollection)

    Article  PubMed  PubMed Central  Google Scholar 

  • Croser JS, Lülsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N et al (2006) Towards doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25:139–157. doi:10.1080/07352680600563850

    Article  Google Scholar 

  • Croser JS, Lülsdorf MM, Grewal RK, Usher KM, Siddique KHM (2011) Isolated microspore culture of chickpea (Cicer arietinum L.): induction of androgenesis and cytological analysis of early haploid divisions. In Vitro Cell Dev Biol Plant 47:357–368. doi:10.1007/s11627-011-9346-7

    Article  CAS  Google Scholar 

  • Croser J, Ribalta F, Pazos Navarro M, Munday C, Nelson K, Edwards K, Castello MC, Bennett R, Erskine W (2014) Accelerated single seed descent (aSSD)—a novel breeding technique to speed attainment of homozygosity. In: ISAT 2015 2nd international symposium on agricultural technology, Thailand, pp 1–4

  • Cruz de Carvalho MH, Van Le B, Zuily-Fodil Y, Pham Thi AT, Van Tran Thanh K (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci 159:223–232. doi:10.1016/S0168-9452(00)00346-0

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95. doi:10.3390/resources2020073

    Article  Google Scholar 

  • Das SK, Shethi KJ, Hoque MI, Sarker RH (2012) Agrobacterium-mediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Cult Biotech 22:13–26. doi:10.3329/ptcb.v22i1.11243

    Article  Google Scholar 

  • Das DK, Bhagat M, Shree S (2016) Agrobacterium Mediated Transformation of Vigna mungo (L.) Hepper with Cry1Ac Gene for Insect Resistance. Am J Plant Sci 7:316–325. doi:10.4236/ajps.2016.72031

    Article  Google Scholar 

  • Deo PC, Tyagi AP, Taylor M, Harding R, Becker D (2010) Factors affecting somatic embryogenesis and transformation in modern plant breeding. S Pac J Nat App Sci 28:27–40. doi:10.1071/SP10002

    Article  Google Scholar 

  • Devi P, Radha P, Sitamahalakshmi L, Syamala D, Manoj Kumar S (2004) Plant regeneration via somatic embryogenesis in mung bean [Vigna radiata (L.) Wilczek]. Sci Hortic 99:1–8. doi:10.1016/S0304-4238(03)00079-7

    Article  CAS  Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51:1237–1242. doi:10.1093/jexbot/51.348.1237

    Article  CAS  PubMed  Google Scholar 

  • Elmaghrabi AM, Ochatt SJ, Rogers H, Frances D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tissue Organ Cult 114:61–70. doi:10.1007/s11240-013-0306-2

    Article  CAS  Google Scholar 

  • El-Saeid H, Abouziena HF, AbdAlla M (2011) Effect of some bioregulators on white lupine (Lupinus termis) seed yield and its components and on endogenous hormones content in seeds. Electron J Pol Agric Univ 14:2. http://www.ejpau.media.pl/volume14/issue4/art-02.html. Accessed 3 May 2016

  • Espinosa-Huerta E, Quintero-Jiménez A, Cabrera-Becerra KV, Mora-Avilés MA (2013) Stable and efficient Agrobacterium tumefaciens-mediated transformation of Phaseolus vulgaris. Agrociencia 47:319–333 http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952013000400002&lng=es&nrm=iso. Accessed 17 June 2016

  • Espósito MA, Almirón P, Gatti I, Cravero VP, López Anido FS, Cointry EL (2012) A rapid method to increase the number of F1 plants in pea (Pisum sativum) breeding programs. Genet Mol Res 11:2729–2732. doi:10.4238/2012.June.18.1

    Article  PubMed  CAS  Google Scholar 

  • FAO (2016) Pulses and climate change. http://www.fao.org/3/a-i5426e.pdf. Accessed 18 August 2016

  • Fiala JV, Tullu A, Banniza S, Se´guin-Swartz G, Vandenberg A (2009) Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris Medik.) Crop Sci 49:825–830. doi:10.2135/cropsci2008.05.0260

    Article  Google Scholar 

  • Fratini R, Ruiz ML (2011) Wide crossing in lentil through embryo rescue. In: Thorpe TA, Young EC (eds) Plant embryo culture: methods and protocols. Humana press, New York, NY, pp 131–139

    Chapter  Google Scholar 

  • Fujioka T, Fujita M, Iwamoto K (2000) Plant regeneration of Japanese pea cultivars by in vitro culture of immature leaflets. J Jpn Soc Hortic Sci 69:656–658. doi:10.2503/jjshs.69.656

    Article  Google Scholar 

  • Gatica-Arias AM, Muños Valverde J, Ramírez Fonseca P, Valdez Melara M (2010) In vitro plant regeneration system for common bean (Phaseolus vulgaris): effect of N6-benzylaminopurine and adenine sulphate. Elec J Biotech 13:1–8. doi:10.2225/vol13-issue1-fulltext-7

    Article  CAS  Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221. doi:10.3390/agronomy2030199

    Article  Google Scholar 

  • Geerts P, Druart P, Ochatt S, Baudoin J (2008) Protoplast fusion technology for somatic hybridisation in Phaseolus. Base 12:41–46. http://popups.ulg.ac.be/1780-4507/index.php?id=2039. Accessed 3 May 2016

  • Geerts P, Toussaint A, Mergeai G, Baudoin JP (2011) Phaseolus immature embryo rescue technology. In: Thorpe TA, Young EC (eds) Plant embryo culture: methods and protocols. Humana press, New York, NY, pp 117–129

    Chapter  Google Scholar 

  • Gepts P, Aragão FJ, De Barros E, Blair MW, Brondani R, Broughton W, McClean P (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In: Genomics of tropical crop plants. Springer, New York, pp 113–143

    Chapter  Google Scholar 

  • Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tissue Organ Cult 86:131–146. doi:10.1007/s11240-006-9088-0

    Article  Google Scholar 

  • Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857. doi:10.1007/s00299-011-1061-7

    Article  PubMed  CAS  Google Scholar 

  • Ghorbani-Marghashi M, Gholami M, Maadankan R, Jamshidi H (2012) The study of 2,4-D and 2,4,5-T effects on gene expression at early stages of embryogenesis in chickpea (Cicer arientinum L.) Afr J Biotechnol 11:2889–2903. doi:10.5897/AJB10.1919

    CAS  Google Scholar 

  • Górska-Koplińska K, Źróbek-Sokolnik A, Górecki RJ, Michalczyk DJ (2010) Capacity for somatic embryogenesis in different pea cultivars. Pol J Natur Sci 25:115–122. doi:10.2478/v10020-010-0009-7

    Article  Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin T (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299. doi:10.1007/s00299-009-0731-1

    Article  CAS  PubMed  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497. doi:10.1038/204497a0

    Article  Google Scholar 

  • Guha-Mukherjee S (1973) Genotypic differences in the in vitro formation of embryoids fron rice pollen. J Exp Bot 24:139–144. doi:10.1093/jxb/24.1.139

    Article  Google Scholar 

  • Hanafy M, Pickardt T, Kiesecker H, Jacobsen H-J (2005) Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica 142:227–236. doi:10.1007/s10681-005-1690-4

    Article  CAS  Google Scholar 

  • Hanafy M, Böttinger P, Jacobsen HJ, Pickardt T (2008) Agrobacterium-mediated transformation of faba bean. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of legumes. CRC Press, Boca Raton, FL, pp 287–300

    Chapter  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517. doi:10.2307/1218252

    Article  Google Scholar 

  • Higgins TJV, Gollasch S, Molvig L et al (2012) Insect-protected cowpeas using gene technology. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. In: Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International institute of tropical agriculture, Ibadan, Nigeria, pp 131–137

  • Hnatuszko-Konka K, Kowalczyk T, Gerszberg A, Wiktorek-Smagur A, Kononowicz A (2014) Phaseolus vulgaris-recalcitrant potential. Biotechnol Adv 32:1205–1215. doi:10.1016/j.biotechadv.2014.06.001

    Article  PubMed  Google Scholar 

  • Hoque MI, Sarker RH (2007) In vitro plant regeneration in Mungbean (Vigna radiata (L.) Wilczek). Plant Tissue Cult Biotech 17(2):209–216

    Google Scholar 

  • Horáček J, Švábová L, Šarhanová P, Lebeda A (2013) Variability for resistance to Fusarium solani culture filtrate and fusaric acid among somaclones in pea. Biol Plant 57:133–138. doi:10.1007/s10535-012-0131-1

    Article  CAS  Google Scholar 

  • Hosp J, Maraschin SF, Touraev A, Boutilier K (2007) Functional genomics of microspore embryogenesis. Euphytica 158:275–285. doi:10.1007/s10681-006-9238-9

    Article  Google Scholar 

  • Ikeda T, Kawaguchi M, Taji A, Tapingkae T, Zulkarnain Z (2011) Somatic (asexual) procedures (haploids, protoplasts, cell selection) and their applications. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic Press, Oxford, pp 139–162

    Google Scholar 

  • Ismail RM, El-Domyati FM, Sadik AS, Nasr El-Din TM, Abdelsalam AZE (2001) Establishment of a transformation system in some Egyptian cultivars of Vicia faba L. Arab J Biotechnol 4:59–61

    Google Scholar 

  • James R (2013) Global status of commercialized Bioteh/GM crops. ISAAA Brief Nº 46 ISAAA Ithaca, NY

  • Kadri A, Chalak L, El Bitar A, Nicolas N, Mroué S, Grenier De March G (2014) In vitro plant regeneration system for two middle east cultivars of chickpea (Cicer arietinum L.). Adv Crop Sci Tech 2:1–4. doi:10.4172/2329-8863.1000125

    Google Scholar 

  • Karimi M, Inzé D, Van Lijsebettens M, Hilson P (2013) Gateway vectors for transformation of cereals. Trends Plant Sci 18:1–4. doi:10.1016/j.tplants.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  • Kawapata k (2015) Development of drought tolerant transgenic bean lines using an improved gene transformation system. Acad J Biotechnol 3:010–014. doi:10.15413/ajb.2015.0110

    Google Scholar 

  • Khatun M, Ali MH, Desamero NV (2003) Effect of genotype and culture media on callus induction and plant regeneration from mature seed scutellum culture in rice. Plant Tissue Cult 13:99-107

    Google Scholar 

  • Khatun MK, Haque MS, Islam S, Nasiruddin KM (2008) In vitro regeneration of mungbean (Vigna radiata L.) from different explants. Prog Agric 19(2):13–19. doi:10.3329/pa.v19i2.16908

    Google Scholar 

  • Khentry Y, Wang SH, Ford R (2014) In vitro propagation of six parental lentil (Lens culinaris ssp. culinaris) genotypes. US Open Agric J 1:1–8. http://arepub.com/Journals.php. Accessed 20 Feb 2016

  • Khush GS, Virmani SS (1996) Haploids in plant breeding. In: Mohan Jain S, Sopory SK, Veilleux RE (eds) In vitro haplioid production in higher plants, volume 1: fundamental aspects and methods. Kluwer Academic Publishers, Boston, pp 11–34

    Chapter  Google Scholar 

  • Kiran K, Sharma, Lavanya M, Anjaiah V (2006) Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp.) expressing the synthetic BT cry1Ab gene. In Vitro Cell Dev Biol Plant 42(2):165–173. doi:10.1079/IVP2005730

    Article  CAS  Google Scholar 

  • Kiran Ghanti S, Sujata KG, Srinath Rao M, Kavi Kisho PB (2010) Direct somatic embryogenesis and plant regeneration from immature explants of chickpea. Biol Plant 54:121–125. doi:10.1007/s10535-010-0018-y

    Article  CAS  Google Scholar 

  • Klenotičová H, Smýkalová I, Švábová L, Griga M (2013) Resolving browning during the establishment of explant cultures in Vicia faba L. for genetic transformation. Acta Univ Agric Silv Mendelianae Brunensis 61:1279–1288. doi:10.11118/actaun201361051279

    Article  Google Scholar 

  • Kozak K, Galek R, Waheed MT, Sawicka-Sienkiewicz E (2012) Anther culture of Lupinus angustifolius: callus formation and the development of multicellular and embryo-like structures. Plant Growth Regul 66:145–153. doi:10.1007/s10725-011-9638-2

    Article  CAS  Google Scholar 

  • Krishna G, Reddy PS, Ramteke PW, Rambabu P, Sohrab SS, Rana D, Bhattacharya P (2011) In vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [Cajanus cajan (L.) Millsp.] cv. JKR105. Physiol Mol Biol Plants. 4:375–385. doi:10.1007/s12298-011-0079-1

    Article  CAS  Google Scholar 

  • Kumar S, Gupta S, Chandra S, Singh BB (2004) How wide is the genetic base of pulse crops. In: Ali M, Singh BB, Kumar S, Dhar V (eds) Pulses in new perspective. Indian Society of Pulse Research and Development, IIPR, Kanpur, pp 211–221

    Google Scholar 

  • Kumari PV (2014) Direct somatic embryogenesis from mature leaves of pigeon pea (Cajanus cajan L. Mill SP). Global J Res Med Plant Indigen Med 3(7):286–293

    Google Scholar 

  • Kumari M, Clarke HJ, des Francs-Small CC, Small I, Khan TN, Siddique KHM (2011) Albinism does not correlate with biparental inheritance of plastid DNA in interspecific hybrids in Cicer species. Plant Sci 180:628–633. doi:10.1016/j.plantsci.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  • Kwapata K, Sabzikar R, Sticklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tiss Organ Cult 100:97–105. doi:10.1007/s11240-009-9624-9

    Article  CAS  Google Scholar 

  • Kwapata K, Nguyen T, Sticklen M (2012) Genetic transformation of common bean (Phaseolus vulgaris L.) with the gus color marker, the bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. Int J Agron. doi:10.1155/2012/198960

    Google Scholar 

  • Lehminger-Mertens R, Jacobsen H-J (1989a) Plant regeneration from pea protoplasts via somatic embryogenesis. Plant Cell Rep 8:379–382. doi:10.1007/BF00270073

  • Lehminger-Mertens R, Jacobsen H-J (1989b) Plant regeneration and organogenesis from pea protoplasts. In Vitro Cell Dev Biol 25:571–574. doi:10.1007/BF02623570

  • Liu D, Zhang H, Zhang L, Yuan Z, Hao M, Zheng Y (2014) Distant hybridization: a tool for interspecific manipulation of chromosomes. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, volume 1 innovations, methods and risk assessment. Springer, Berlin, pp 25–42

    Chapter  Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploid production in food legumes. Chapter 11. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire, pp 336–347

    Google Scholar 

  • Lulsdorf M, Ying Yang H, Slater S, Vanderberg A, Han X, Zaharia LI (2012) Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae). Plant Cell Rep 31:1255–1267. doi:10.1007/s00299-012-1246-8

    Article  CAS  PubMed  Google Scholar 

  • Lulsdorf MM, Ferrie A, Slater SMH, Yuan HY (2014) Methods and role of embryo rescue technique in alien gene transfer. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, volume 1: innovations, methods and risk assessment. Springer, New York, NY, pp 77–103

    Chapter  Google Scholar 

  • Mahamune SE, Bansode RP, Sangle SM, Waghmare VA, Pandhure NB, Kothekar VS (2011) Callus induction from various explants of French bean (Phaseolus vulgaris L.). J Exp Sci 2:15–16. doi:10.1371/journal.pone

    CAS  Google Scholar 

  • Mallikarjuna N, Muehlbauer FJ (2011) Chickpea hybridization using in vitro techniques. In: Thorpe TA, Young EC (eds) Plant embryo culture: methods and protocols. Humana Press, New York, NY, pp 93–105

    Chapter  Google Scholar 

  • Martinez J (2010) Tolerance to sub-zero temperatures in Phaseolus acutifolius and interspecies hybrids between Phaseolus vulgaris and P. acutifolius. Doctoral Dissertation, University of Saskatchewan Saskatoon

  • Metry EA, Ismail RM, Hussien GM, Nasr El-Din TM, El-Itriby HA (2007) Regeneration an microprojectile-mediated transformation in Vicia faba L. Arab J Biotechnol 10:23–26

    Google Scholar 

  • Mishra S, Sanyal I, Amla DV (2012) Changes in protein pattern during different developmental stages of somatic embryos in chickpea. Biol Plant 56:613–619. doi:10.1007/s10535-012-0124-0

    Article  CAS  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2014) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev Biol Plant 51(1):71–79. doi:10.1007/s11627-014-9647-8

    Article  CAS  Google Scholar 

  • Mony SA, Haque MdS, Alam MdM, Hasanuzzaman M, Nahar K (2010) Regeneration of black gram (Vigna mungo L.) on changes of hormonal condition. Not Bot Hort Agrobot Cluji 38(3):140–145

    Google Scholar 

  • Murovec J, Bohanec B (2012) Haploids and doubled haploids in plant breeding. In: Abdurakhmonov DI (ed) Plant breeding. In Tech Rijeka, Croacia, pp 87–106

    Google Scholar 

  • Muruganantham M, Amutha S, Selvaraj N, Vengadesan G, Ganapathi A (2007) Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol Plant 43(6):550–557. doi:10.1007/s11627-007-9060-7

    Article  CAS  Google Scholar 

  • Muruganantham M, Amutha S, Ganapathi A (2010) Somatic embryo productions by liquid shake culture of embryogenic calluses in Vigna mungo (L.) Hepper. In Vitro Cell Dev Biol Plant 46:34–40. doi:10.1007/s11627-009-9224-8

    Article  Google Scholar 

  • Nafie EM, Taha HS, Mansur RM (2013) Impact of 24-epibrassinolide on callogenesis and regeneration via somatic embryogenesis in Phaseolus vulgaris L. cv. Brunca. World App Sci J 24:188–200. doi:10.5829/idosi.wasj.2013.24.02.13191

    Google Scholar 

  • Negawo AT (2015) Transgenic insect resistance in grain legumes. Thesis Hannover Univ Diss 159

  • Niu Z, Jiang A, Hammad WA, Oladzadabbasabadi A, Xu SS, Mergoum M (2014) Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed 133:313–320. doi:10.1111/pbr.12162

    Article  CAS  Google Scholar 

  • Ochatt SJ (2013) Plant cell electrophysiology: applications in growth enhancement, somatic hybridisation and gene transfer. Biotechnol Adv 31:1237–1246. doi:10.1016/j.biotechadv.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35:535–552. doi:10.1007/s13593-014-0276-8

    Article  CAS  Google Scholar 

  • Ochatt SJ, Revilla MA (2016) From stress to embryos: some of the problems for induction and maturation of somatic embryos. In vitro Embryogenesis Higher Plant Methods Mol Biol 1359:523–536. doi:10.1007/978-1-4939-3061-6_31.

    Article  Google Scholar 

  • Ochatt SJ, Sangwan RS (2008) In vitro shortening of generation time in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 93:133–137. doi:10.1007/s11240-008-9351-7

    Article  Google Scholar 

  • Ochatt SJ, Sangwan RS (2010) In vitro flowering and seed set: acceleration of generation cycles. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, Chichester, pp 97–110

    Chapter  Google Scholar 

  • Ochatt SJ, Mousset-Dèclas C, Rancillac M (2000) Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Sci 156:177–183. doi:10.1016/S0168-9452(00)00250-8

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ, Pontecaille C, Rancillac M (2000b) The growth regulators used for bud regeneration and shoot rooting affect the competence for flowering and seed set in regenerated plants of protein pea. In Vitro Cell Dev Biol Plant 36:188–193. doi:10.1007/s11627-000-0035-1

  • Ochatt SJ, Sangwan RS, Marget P, Ndong YA, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440. doi:10.1046/j.1439-0523.2002.746803.x

    Article  Google Scholar 

  • Ochatt SJ, Marget P, Aubert G, Moussy F, Pontécaille C, Jacas L (2004) Overcoming hybridisation barriers between pea and some of its wild relatives. Euphytica 137:353–359. doi:10.1023/B:EUPH.0000040476.57938.81

    Article  CAS  Google Scholar 

  • Ochatt SJ, Delaitre C, Lionneton E, Huchette O, Patat-Ochatt EM, Kahane R (2005) One team, PCMV, and one approach, in vitro biotechnology, for one aim, the breeding of quality plants with a wide array of species. In: Dris R (ed) Crops growth, quality and biotechnology. WFL Publ Sci & Technol, Helsinki, pp 1038–1067

    Google Scholar 

  • Ochatt SJ, Abirached-Darmency M, Marget P, Aubert G (2007) The Lathyrus paradox: “poor men’s diet” or a remarkable genetic resource for protein legume breeding? In: Ochatt SJ, Jain SM (eds) Breeding of neglected and under-utilised crops, spices and herbs. Science Press, Plymouth, pp 41–60

    Google Scholar 

  • Ochatt S, Pech C, Grewal R, Coreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328. doi:10.1016/j.jplph.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ, Atif RM, Patat Ochatt EM, Jacas L, Connreux C (2010) Competence versus recalcitrance for in vitro regeneration. Not Bot Hort Agrobot Cluj 38:102–108. http://www.notulaebotanicae.ro/index.php/nbha/article/view/4876. Accessed: 17 June 2016

  • Omran VG, Bagheri A, Moshtaghi N (2008) Direct in vitro regeneration of lentil (Lens culinaris Medik). Pak J Biol Sci 11:2237–2242. doi:10.3923/pjbs.2008.2237.2242

    Article  CAS  PubMed  Google Scholar 

  • Özdemir FA, Türker M (2014) In vitro plant regeneration influence by BAP and IBA in lentils (Lens culinaris Medik). J Appl Biol Sci 8:22–27

    Google Scholar 

  • Palmer CE, Keller WA (2005) Overview of haploidy. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II, vol 56. Springer, Heidelberg, Germany, pp 3–11

    Chapter  Google Scholar 

  • Panchangam SS, Mallikarjuna N, Gaur PM (2014) Androgenesis in chickpea: Anther culture and expressed sequence tags derived annotation. Indian J Exp Biol 52:181–188

    CAS  PubMed  Google Scholar 

  • Parveen S, Venkateshwarlu M, Srinivas D, Jagan Mohan Reddy K, Ugandhar T (2012) Direct in vitro shoots proliferation of chick pea (Cicer arietinum L.) from shoot tip explants induced by thidiazuron. Biosc Discov 3:01–05

    Google Scholar 

  • Pérez de la Vega M, Fratini RM, Muehlbauer FJ (2011) Lentil. In: Pérez de la Vega M, Torres AM, Cubero JI, Kole C (eds) Genetics, genomics and breeding of cool season grain legumes (genetics, genomics and breeding in crop plants). Science Pubs, New Hampshire, pp 98–150

    Google Scholar 

  • Pniewsky T, Wachowiak J, Kapusta J, Legocki A (2003) Organogenesis and long term micropropagation in polish pea cultivars. Acta Soc Bot Pol 72:295–302. doi:10.5586/asbp.2003.038

    Article  Google Scholar 

  • Popelka CJ, Gollasch S, Moore A, Molvig L, Higgins TJV. (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312. doi:10.1007/s00299-005-0053-x

    Article  CAS  PubMed  Google Scholar 

  • Prasad MG, Sridevi V, Satish Kumar M (2014) Efficient plant regeneration from cotyledonary node of blackgram (Vigna mungo (L.) Hepper). Int J Adv Biotechnol Res 5(1):20–24

    Google Scholar 

  • Pratap A, Choudhary AK, Kuma J (2010) In vitro techniques towards genetic enhancement of food legumes—a review. J Food Legumes 23:169–185

    Google Scholar 

  • Puonti-Kaerlas J, Eriksson T (1988) Improved protoplast culture and regeneration of shoots in pea (Pisum sativumL.) Plant Cell Rep 7:242–245. doi:10.1007/BF00272533

    Article  CAS  PubMed  Google Scholar 

  • Quintero-Jiménez A, Espinosa-Huerta E, AcostaGallegos JA, Guzmán-Maldonado HS, Mora-Avilés MA (2010) An improved method for in vitro regeneration of common bean (Phaseolus vulgaris L.). Agrociencia 44:57–64. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952010000100005&lng=es&nrm=iso. Accessed 17 June 2016

  • Rafiq M, Mali M, Ahmad Naqvi SH, Umar Dahot M, Faiza H KhatariRaghav A (2012) Regeneration of plants in EMS treated local mung bean (Vigna radiate L. Wilczek) under salt stress. Pak J Biotechnol 9(2):83–89

    Google Scholar 

  • Rajendiran K, Thiruvarasan K, Vijayalakshmi R (2016) In vitro callus induction in leaf explants of black gram varieties grown under in situ uv-b radiation. Int J Agric Sc Vet Med 4(1):53–64. http://www.ijasvm.com/currentissue.php

  • Rajput V, Singh NP (2010) Studies on in vitro regeneration and direct organogenesis in pea († Pisum sativum L.). Indian J Plant Physiol 15:246–249

    CAS  Google Scholar 

  • Rao KS, Sreevathsa R, Sharma PD, Keshamma E, Udaya Kumar M (2008) In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. Physiol Mol Biol Plant 14(4):321–328. doi:10.1007/s12298-008-0030-2

    Article  CAS  Google Scholar 

  • Raut RV, Dhande GA, Rajput JC, Ingale AG (2015) Rapid and highly competent shoot regeneration of Pigeon pea (Cajanus cajan L) using variable explants by in vitro culture system. J Pharmacogn Phytochem 4(4):1–5

    Google Scholar 

  • Raveendar S, Premkumar A, Sasikumar S, Ignacimuthu S, Agastian P (2009) Development of a rapid, highly efficient system of organogenesis in cowpea Vigna unguiculata (L) Walp. S Afr J Bot 75:17–21. doi:10.1016/j.sajb.2008.05.009

    Article  Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–619. doi:10.1038/nature08842

    Article  CAS  PubMed  Google Scholar 

  • Reddy MP (2015) Desert plant biotechnology: jojoba date palm and Acacia species. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol 2: plant genomics and biotechnology, Springer, pp 725–742. doi:10.1007/978-81-322-2283-5

  • Ribalta F, Croser J, Ochatt S (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110. doi:10.1016/j.jplph.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  • Ribalta FM, Croser JS, Erskine W, Finnegan PM, Lulsdorf MM, Ochatt S (2014) Antigibberellin-induced reduction of internode length favors in vitro flowering and seed-set in different pea genotypes. Biol Plant 58:39–46. doi:10.1007/s10535-013-0379-0

    Article  CAS  Google Scholar 

  • Ribalta FM, Pazos-Navarro M, Nelson K, Edwards K, Ross JJ, Bennett RG, Munday C, Erskine W, Ochatt SJ, Croser JS (2016) Precocious floral initiation and identification of exact timing of embryo physiological maturity facilitate germination of immature seeds to truncate the lifecycle of pea. Plant Growth Regul (in press)

  • Saha S, Tullu A, Yuan HY, Lulsdorf MM, Vandenberg A (2015) Improvement of embryo rescue technique using 4-chloroindole-3-acetic acid in combination with in vivo grafting to overcome barriers in lentil interspecific crosses. Plant Cell Tissue Organ Cult 120:109–116. doi:10.1007/s11240-014-0584-3

    Article  CAS  Google Scholar 

  • Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Idris A (2014) Serine rich protein is a novel positive regulator for silicon accumulation in mangrove. Gene 556:170–81. doi:10.1016/j.gene.2014.11.055

    Article  PubMed  CAS  Google Scholar 

  • Sainger M, Chaudhary D, Dahiya S, Jaiwal R, Jaiwal PK (2015) Development of an efficient in vitro plant regeneration system amenable to Agrobacterium-mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). Physiol Mol Biol Plant 21:505–517. doi:10.1007/s12298-015-0315-1

    Article  CAS  Google Scholar 

  • Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859. doi:10.1007/s00299-003-0574-0

    CAS  PubMed  Google Scholar 

  • Sanchez EA, Mosquera T (2006) Establishing a methodology for inducing the regeneration of pea (Pisum sativum L.) explants, ‘Santa Isabel’ variety. Agron Colomb 24:17–27. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652006000100003&lng=en&nrm=iso

  • Sarker RH, Subroto K, Hoque MI (2012) In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In vitro Cell Dev Biol Plant 48:446–452. doi:10.1007/s11627-012-9444-1

    Article  Google Scholar 

  • Sawicka-Sienkiewicz EJ, Galek R, Clements JC, Wilson J (2008) Difficulties with interspecific hybridization in the genus Lupinus. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th international lupin conference, 14–18 Sept 2008, Fremantle, Western Australia, pp 135–142

  • Schlichting CD, Wund MA (2014) Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68:656–672. doi:10.1111/evo.12348

    Article  PubMed  Google Scholar 

  • Sevimay C. S., Khawar K. M., Yuzbasioglu E. (2005) Adventitious shoot regeneration from different explants of wild lentil (Lens culinaris subsp. orientalis). Biotechnol 19(2):46–49. doi:10.1080/13102818.2005.10817189

    Google Scholar 

  • Silva TD (2012) Microspore embryogenesis. In: Sato KI (ed) Embryogenesis, InTech. http://www.intechopen.com/books/embryogenesis/microspore-embryogenesis. Accessed 21 May 2016

  • Singh AK, Bharati RC, Manibhushan NCH, Pedpati A (2013) An assessment of faba bean (Vicia faba L.) current status and future prospect. Af J Agric Res 8:6634–6641. doi:10.5897/AJAR2013.7335

    Google Scholar 

  • Sivakumar P, Gnanam R, Ramakrishnan K, Manickam A (2010) Somatic embryogenesis and regeneration of Vigna radiata. Biol Plant 54(2):245–251. doi:10.1007/s10535-010-0043-x

    Article  Google Scholar 

  • Sivakumar P, Rajesh S, Gnanam R, Manickam A (2011) Effect of in vitro culture conditions on somaclonal variation in cowpea (Vigna unguiculata Walp.) using RAPD markers. Acta Biol Hung 62(1):34–44. doi:10.1556/ABiol.61.2011.1.3

    Article  CAS  PubMed  Google Scholar 

  • Skrzypek E, Czyczyło-Mysza I, Marcinska I, Wedzony M (2008) Prospects of androgenetic induction in Lupinus spp. Plant Cell Tissue Organ Cult 94:131–137. doi:10.1007/s11240-008-9396-7

    Article  Google Scholar 

  • Skrzypek E, Czyczyło-mysza I, Marcińska I (2012) Indirect organogenesis of faba bean (Vicia faba L. Minor). Acta Biol Cracoviensia 54:102–108. doi:10.2478/v10182-012-0026-7

    Google Scholar 

  • Smýkal P (2000) Pollen embryogenesis: the stress mediated switch from gametophytic to sporophytic development. Current status and future prospects. Biol Plant 43:481–489. doi:10.1023/A:1002835330799

    Article  Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, Blair MW et al. (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104. doi:10.1080/07352689.2014

    Article  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008).Transgenic cowpea (Vigna unguiculata) seeds expressing a bean a-amylase inhibitor 1confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850. doi:10.1007/s00299-008-0606-x

    Article  CAS  PubMed  Google Scholar 

  • Solleti SK, Bakshi S, Sahoo L (2008) Additional virulence genes in conjunction with efficient selection scheme and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J Biotechnol 135:97–104. doi:10.1016/jjbiotec.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  • Soniya, E.V., Banerjee, N.S., Das, M.R (2001) Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr Sci 80(9):1213–1215

    CAS  Google Scholar 

  • Srilatha T, Anithadevi U, Ugandhar T (2014) Efficient plantlet regeneration from nodal explant culture of blackgram (Vigna mungo L.). Hepper Biosci Discov 5(2):131–138

    Google Scholar 

  • Sriskandarajah S, Sameri M, Lerceteau-Köhler E, Westerbergh A (2015) Increased recovery of green doubled haploid plants from barley anther culture. Crop Sci 55:2806–2812. doi:10.2135/cropsci2015.04.0245

    Article  CAS  Google Scholar 

  • Srivastava P, Pandey A (2011) Induction of somatic embryogenesis and plantlet development by using leaf explants in black gram. World Congr Biotechnol. doi:10.4172/2155-952X.1000001

    Google Scholar 

  • Srivastava J, Raghav PK (2013) Agrobacterium mediated genetic transformation in pigeonpea—A review. Int J Agric Food Sci 3:154–156

    Google Scholar 

  • Subroto KD, Kishwar JS, Hoque MI, Sarker RH (2012) Agrobacterium-mediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Cult Biotech 22(1):13–26. doi:10.3329/ptcb.v22i1.11243

    Google Scholar 

  • Sunil SP, Robinson JP, Karthick Balan SS, Anandhaprabhakaran M, Balakrishnan V (2015) In vitro regeneration and induction of multiple shooting in Cicer arietinum L. using cotyledonary nodal explants Afr J Biotechnol 14(13):1129–1138. doi:10.5897/AJB2013.13547

    Article  CAS  Google Scholar 

  • Surma M, Adamski T, Święcicki W, Barzyk P, Kaczmarek Z, Kuczyńska A, Krystkowiak K, Mikołajczak K, Ogrodowicz P (2013) Preliminary results of in vitro culture of pea and lupin embryos for the reduction of generation cycles in single seed descent technique. Acta Soc Bot Pol 82(3):231–236

    Article  Google Scholar 

  • Suvorova, G (2014) Hybridization of cultivated lentil Lens culinaris Medik. and wild species Lens tomentosus Ladizinsky. Czech J Genet Plant Breed 50(2):130–134

    Google Scholar 

  • Szarejko I, Forster BP (2007) Doubled haploidy and induced mutation. Euphytica 158:359–370. doi:10.1007/s10681-006-9241-1

    Article  Google Scholar 

  • Tabe LM, Molvin L (2007) Lupins. In: Chong P, Davey MR (eds) Transgenic crops VI. Springer, Berlin, pp 398–408

    Google Scholar 

  • Tang Y, Chen L, Li XM, Li J, Luo Q, Lai J, Li HX (2012) Effect of culture condition on the plant regeneration via organogenesis from cotyledonary node of cowpea (Vigna unguiculata L. Walp). Afr J Biotechnol 11:3270–3275. doi:10.5897/AJB11.3214

    Article  CAS  Google Scholar 

  • Tavallaie F, Ghareyazie B, Bagheri A, Sharma K (2011) Lentil regeneration from cotyledon explant bearing a small part of the embryo axis. Plant Tiss Cult and Biotech 21:169–180. doi:10.3329/ptcb.v21i2.10240

    Google Scholar 

  • Tek AL, Stupar RM, Nagaki K (2015) Modification of centromere structure: a promising approach for haploid line production in plant breeding. Turk J Agric For 39:557–562. doi:10.3906/tar-1405-137

    Article  Google Scholar 

  • Thảo NT, Thảo NTP, Hassan F, Jacobsen HJ (2013) In vitro propagation of common bean (Phaseolus vulgaris L.) J Sci Develop 11:868–876

    Google Scholar 

  • Thiagarajan T, Recinos H, Tillett A (2013) Effect of salinity on callus formation and organogenesis of red kidney beans (Phaseolus vulgaris L.) European Sci J 9(33):357–362

    Google Scholar 

  • Torres AM, Avila CM, Stoddard FL, Cubero JI (2011) Faba bean. In: Pérez de la Vega M, Torres AM, Cubero JI, Kole C (eds) Genetics, genomics and breeding of cool season grain legumes (genetics, genomics and breeding in crop plants). Science Pubs, New Hampshire, pp 50–97.

    Google Scholar 

  • Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 113(3):513–527

    Article  CAS  Google Scholar 

  • Tsyganov VE, Belimob AA, Borisov AY, Safranove VI, Georgi M, Dietz KJ, Tikhonovich IA (2007) A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium. Ann Bot 99:227–237. doi:10.1093/aob/mcl261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tullu A, Bett K, Banniza S, Vail S, Vandenberg A (2013) Widening the genetic base of cultivated lentil through hybridization of Lens culinaris “Eston” and L. ervoides accession IG 72815. Can J Plant Sci 93:1037–1047. doi:10.4141/cjps2013-072

    Article  Google Scholar 

  • Ugandhar T, Venkateshwarlu M, Sammailah D. Jagan Mohan Reddy K (2012) Rapid in vitro micro propagation of chick pea (Cicer arietinum L.) from shoot tip and cotyledonary node explants. J Biotechnol Biomater 2(6):1–6. doi:10.4172/2155-952X.1000148

    Google Scholar 

  • Ugandhar T, Venkateshwarlu M, Shekhar GPV, Jagan Mohan Reddy K (2012) High frequency somatic embryogenesis and plantlet regeneration from cotyledon explants of pigeon pea (Cajanus cajan L), a grain legume. Int J Pharm Bio Sci 3(1):291–298

    CAS  Google Scholar 

  • Vásquez S, Carrasco J, Seemann P (2015) Induction of somatic embryos in three species of Lupinus (L. angustifolius, L. albus and L. mutabilis). Conference paper: 66 Congreso Agronómico de Chile

  • Venkatachalam P, Geetha N, Priya P, Jayabalan N, Lakshmi Sital G (2003) Somatic embryogenesis. In: Jaiwal PK, Singh RP (eds) Improvement strategies for leguminosae biotechnology, Kluwer Academic Publishers, Boston, pp: 87–132

    Chapter  Google Scholar 

  • Vianna GR, Albino MMC, Dias BBA, de Mesquita SL, Rech EL, Araga˜o FJL (2004) Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.) Sci Hort 99:371–378. doi:10.1016/S0304-4238(03)00107-9

    Article  CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472. doi:10.1016/j.jplph.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  • Weeden NF (2007) Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann Bot 100:1017–1025. doi:10.1093/aob/mcm122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson J, Clements J, Quealy J, Yang H (2008) Development of an interspecific hybridization protocol for Lupinus. In: Palta JA, Berger JD (eds) Lupins for health and wealth. Proceedings of the 12th International Lupin Conference, 14–18 Sept 2008. Fremantle, Western Australia, pp 147–151

  • Zaman MA, Manjur, A.B.M.K., Ahmed M, Islam MM (2010). Effect of 2,4-d on callus induction and subsequent morphogenesis in mature chickpea (Cicer arietinum L.) embryo culture. In: Islam AS, Haque MM, Sarker RH, Hoque MI (eds) Role of biotechnology in food security and climate change. Proceedings of sixth international plant tissue culture and biotechnology. Conference, December 3-5, 2010, Bangladesh association plant tissue culture and biotechnology. Dhaka, Bangladesh. pp. 53-58

  • Zhihui S, Tzitzikas M, Raemakers K, Zhengqiang M et al (2009) Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). in vitro. Cell Dev Biol Plant 45:776–782. doi:10.1007/s11627-009-9212-z

    Article  Google Scholar 

  • Ziemienowicz A (2013) Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol 3:95–102. doi:10.1016/j.bcab.2013.10.004

    Google Scholar 

  • Zulkarnain Z, Tapingkae T, Taji A (2015) Applications of in vitro techniques in plant breeding. In: AlKhayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools, vol 1. Springer, Switzerland, pp 293–328

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Gatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, I., Guindón, F., Bermejo, C. et al. In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tiss Organ Cult 127, 543–559 (2016). https://doi.org/10.1007/s11240-016-1082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1082-6

Keywords

Navigation