Skip to main content
Log in

Morpho- and histodifferentiation of shoot regeneration of Billbergia zebrina (Helbert) Lindley nodular cultures

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Regeneration of nodular cultures involves the production of new individuals from organogenic nodules. Despite the existence of well-established protocols for bromeliads species, many gaps in understanding the mechanisms of this route still remain, particularly the regeneration of new shoots, a stage little explored. Therefore, this work aimed to monitor the morpho and histodifferentiation processes of shoot regeneration from nodular cultures of Billbergia zebrina. To accomplish this, nodular cultures previously obtained from nodal segments of B. zebrina were transferred to regeneration induction medium consisting of semi-solid MS medium supplemented with 1.0 µM of naphthalene acetic acid and 2.0 µM of benzylaminopurine, respectively. Cultures were maintained in a growth chamber over 8 weeks, and samples were collected weekly for analysis under light, transmission electron, and scanning electron microscopy. Cells in the shoot formation region presented characteristics of mitotically active cells, such as the presence of numerous plasmodesmata and conspicuous microtubules. New shoots maintained vascular connection to the node. Cells binding the nodule vascular bundle toward the shoot showed degeneration of organelles, which, in turn, originated vascular neoelements. The dome presented a depressed or prominent surface, depending on shoot development. Rounded stomata were conspicuous in the leaf primordia and generally higher in number as compared to the epidermal surface. This study elucidated the nodular culture in vitro system in aspects associated to the regeneration of shoots and it is anticipated that such data will lead to the optimization of present nodular cultures based protocols with the aim of conserving endangered bromeliad species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAN:

Naphthalene acetic acid

BAP:

Benzylaminopurine

BD:

Bud

CC:

Companion cell

CL:

Chlorenchyma

CP:

Chloroplast

CO:

Corpus

DM:

Donut-shaped mitochondria

DO:

Dome

ER:

Endoplasmic reticulum

GC:

Golgi complex

HY:

Hydrenchyma

LAVEG:

Plant Anatomy Laboratory

LCME:

Central Laboratory of Electron Microscopy

LF:

Leaf

LFDGV:

Laboratory of Plant Development and Genetics

LP:

Leaf primordia

LM:

Light microscopy

MI:

Mitochondria

MS:

Mitochondria in series

NC:

Nodular culture

NO:

Nodule

PL:

Plastoglobuli

RO:

Root

SEM:

Scanning electron microscopy

SH:

Shoot

SN:

Sieve neolelement

ST:

Stoma

TDZ:

Thidiazuron

TEM:

Transmission electron microscopy

TU:

Tunica

VC:

Vascularization

VA:

Vacuole

VB:

Vascular bundle

References

  • Alves GM, Guerra MP (2001) Micropropagation for mass propagation and conservation of Vriesea friburguensis var. paludosa from microshoots. J Bromeliad Soc 51:202–212

    Google Scholar 

  • Alves GM, Dal Vesco LL, Guerra MP (2006) Micropropagation of the Brazilian endemic bromeliad Vriesea reitzii trough nodule culture. Sci Hortic 110:204–207

    Article  CAS  Google Scholar 

  • Barboza SBSC, Graciano-Ribeiro D, Teixeira JB, Portes TA, Souza LAC (2006) Anatomia foliar de plantas micropropagadas de abacaxi. Pesquisa Agropecuária Brasileira 41:185–194

    Article  Google Scholar 

  • Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa. Planta 187:405–413

    Article  CAS  PubMed  Google Scholar 

  • Batista D, Ascensão L, Sousa MJ, Pais MS (2000) Adventitious shoot mass production of hop (Humulus lupulus L.) var. Eroica in liquid medium from organogenic nodule cultures. Plant Sci 151:47–57

    Article  CAS  Google Scholar 

  • Bevitore R, Popielarska-Konieczna M, Santos EM, Grossi-de-Sá ME, Petrofeza S (2014) Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation. Protoplasma 251:545–554

    Google Scholar 

  • Blanke MM, Belcher AR (1989) Stomata of apple leaves cultured in vitro. Plant Cell Tiss Organ Cult 19:85–89

    Article  Google Scholar 

  • Carneiro LA, Araújo RFG, Brito GJM, Fonseca MHPB, Costa A, Crocomo OJ, Mansur E (1999) In vitro regeneration from leaf explants of Neoregelia cruenta (R. Graham) L.B. Smith, an endemic bromeliad from eastern Brazil. Plant Cell Tiss Organ Cult 55:79–83

    Article  Google Scholar 

  • Chuartzman SG, Nevo R, Shimoni E, Charuvi D, Kiss V, Ohad I, Brumfeld V, Reicha Z (2008) Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell 20:1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corredor-Prado JP, Schmidt EC, Guerra MP, Bouzon ZL, Dal Vesco LL, Pescador R (2015) Histodifferentiation and ultrastructure of nodular cultures from seeds of Vriesea friburgensis Mez var. paludosa (L.B. Smith) L.B. Smith and leaf explants of Vriesea reitzii Leme & A. Costa (Bromeliaceae). J Microsc Ultrastruct 3:200–209

    Article  Google Scholar 

  • Cyr R (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10:153–180

    Article  CAS  PubMed  Google Scholar 

  • Dal Vesco LL, Guerra MP (2010) In vitro morphogenesis and adventitious shoot mass regeneration of Vriesea reitzii from nodule cultures. Sci Hortic 125:748–755

    Article  CAS  Google Scholar 

  • Dal Vesco LL, Stefenon VM, Welter LJ, Scherer RF, Guerra MP (2011) Induction and scale-up of Bilbergia zebrina nodule cluster cultures: implications for mass propagation, improvement and conservation. Sci Hortic 128:515–522

    Article  CAS  Google Scholar 

  • Dedicová B, Hricová A, Samaj J, Obert B, Bobák M, Pret’ová A (2000) Shoots and embryo-like structures regenerated from cultured flax (Linum usitatissimum L.) hypocotyl segments. J Plant Physiol 157:327–334

    Article  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30

    Article  CAS  PubMed  Google Scholar 

  • Evert RF (2008) Esau’s plant anatomy: meristems, cells, and tissues of the plant body, their structure, function, and development. Wiley, New York

    Google Scholar 

  • Fermino Júnior PCP, Lando AP, Santos M, Pescador R (2014) Morfo-histologia de culturas nodulares na micropropagação de Aechmea setigera Mart. Ex Schult. & Schult. F. (Bromeliaceae). Evidência 14:85–98

  • Fortes AM, Pais MS (2000) Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot 87:971–979

    Article  CAS  PubMed  Google Scholar 

  • Fraga HPF, Vieira LN, Puttkammer CC, Oliveira EM, Guerra MP (2015) Time-lapse cell tracking reveals morphohistological features in somatic embryogenesis of Araucaria angustifolia (Bert) O. Kuntze. Trees 29:1613–1623

    Article  CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture: the technology (2nd edn). Exegetics, Edington

  • Gerrits PO, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. J Microsc 132:81–85

    Article  CAS  PubMed  Google Scholar 

  • Guerra MP, Dal Vesco LL (2010) Strategies for the micropropagation of bromeliads. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants: methods in molecular biology. Humana Press, New York, vol 589, pp 47–66

    Chapter  Google Scholar 

  • Gunning BES (1976) Introduction to plasmodemata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies in plasmodemata. Springer-Verlata, New York

    Chapter  Google Scholar 

  • Haensch KT (2004) Morpho­histological study of somatic embryo­like structures in hypocotyl cultures of Pelargonium × hortorum Bailey. Plant Cell Rep 22:376­381

    Article  Google Scholar 

  • Hause B, Hause G, Pechan P, Van Lammeren AAM (1993) Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napus L. Cell Biol Int 17:153–168

    Article  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Horridge GA, Tamm SL (1969) Critical point drying for scanning electron microscopy study of ciliary motion. Science 163:817–818

    Article  CAS  PubMed  Google Scholar 

  • Izgu T, Sevindik B, Çuruk P, Simsek O, Kaçar YA, Silva JAT, Mendi YY (2016) Development of an efficient regeneration protocol for four Cyclamen species endemic to Turkey. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-016-1033-2

    Google Scholar 

  • Jendrach M, Mai S, Pohl S, Voth M, Bereiter-Hahn J (2008) Shot- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 8:293–304

    Article  CAS  PubMed  Google Scholar 

  • Johansson M, Kronestedt-Robards EC, Robards AW (1992) Rose leaf structure in relation to different stages of micropropagation. Protoplasma 166:165–176

    Article  Google Scholar 

  • Kobayashi I, Kobayashi Y (2000) Control of the response to biotic stresses. In: Nick P (ed) Plant microtubules: potential for biotechnology. Springer, Berlin, pp 83–102

    Chapter  Google Scholar 

  • Konieczny R, Bohdanowicz J, Czaplicki AZ, Przywara L (2005) Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tissue Organ Cult 83:201–208

    Article  Google Scholar 

  • Krupinska K (2007) Fate and activities of plastids during leaf senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer Netherlands, Berlin, pp 433–449

    Chapter  Google Scholar 

  • Lichtenthaler HK (2013) Plastoglobuli, thylakoids, chloroplast structure and development of plastids. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid development in leaves during growth and senescence, advances in photosynthesis and respiration. Springer Netherlands, Berlin, vol 36 pp 337–361

    Chapter  Google Scholar 

  • Liu X, Hajnóczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia–reoxygenation stress. Cell Death Differ 18:1561–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli G (2000) The bromeliads of the Atlantic forest. Sci Am 282:86–93

    Article  CAS  PubMed  Google Scholar 

  • Mayer JLS, Ribas LLF, Bona C, Quiorin M (2008) Anatomia comparada das folhas e raízes de Cymbidium Hort. (Orchidaceae) cultivadas ex vitro e in vitro. Acta Bot Bras 22:323–332

    Article  Google Scholar 

  • McCown BH, Zeldin EL, Pinkalla HÁ, Dedolph RR (1988) Nodule culture: a developmental pathway with high potencial for regeneration, automated micropropagation, and plant metabolite production from woody plants. In: Hanover JH, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, pp 149–166

    Chapter  Google Scholar 

  • Morel GM, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38:138–140

    Article  CAS  Google Scholar 

  • Moyo M, Finnie JF, van Staden J (2009) In vitro morphogenesis of organogenic nodules derived from Sclerocarya birrea subsp. caffra leaf explants. Plant Cell Tissue Organ Cult 98:273–280

    Article  Google Scholar 

  • Mujib A, Tonk D, Ali M (2014) Plant regeneration from protoplasts in Indian local Coriandrum sativum L.: scanning electron microscopy and histological evidences for somatic embryogenesis. Plant Cell Tissue Organ Cult 117:323–334

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and biossays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nick P (2000) Control of plant shape. In Nick P (ed) Plant microtubules: potential for biotechnology. Springer, Berlin, pp 25–50

    Chapter  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphy Pty, Melburne

    Google Scholar 

  • O’Brien TP, Feder N, M’ccully ME (1964) Polychromatic staining of plant cell walls by Toluidine Blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Pereira CS, Ribeiro JML, Vatulescu AD, Findlay K, MacDougall AJ, Jackson PAP (2011) Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration. Biomedcentral Plant Biol 11:1–15

    Google Scholar 

  • Piéron S, Boxus P, Dekegel D (1998) Histological study of nodule morphogenesis from Chicorium intybus L. leaves cultivated in vitro. In vitro Cell Dev Biol Plant 34:87–93

    Article  Google Scholar 

  • Pilarska M, Czaplicki AZ, Konieczny R (2007) Patterns of pectin epitope expression during shoot and root regeneration in androgenic cultures of two wheat cultivars. Acta Biol Cracov 49:69–72

    Google Scholar 

  • Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Świerczyńska J, Góralski G, Ślesak H, Bohdanowicz J (2008) Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm-derived callus culture. Plant Cell Rep 27:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Popielarska-Konieczna M, Bohdanowicz J, Starnawska E (2010) Extracellular matrix of plant callus tissue visualized by ESEM and SEM. Protoplasma 247:121–125

    Article  PubMed  Google Scholar 

  • Reitz R (1983) Bromeliáceas e a malária—bromélia endêmica. Herbário Barbosa Rodrigues, Itaja

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salaj J, Petrovska B, Obert B, Pret’ova A (2005) Histological study of embryo-like structures initiated from hypocotyls segments of flax (Linum usitatissimum L.). Plant Cell Rep 24:590–595

    Article  CAS  PubMed  Google Scholar 

  • Samaj JS, Baluska F, Bobák M, Volkmann D (1999) Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep 18:369–374

    Article  CAS  Google Scholar 

  • Scherer RF, Garcia AC, Fraga HPF, Dal Vesco LL, Steinmacher DA, Guerra MP (2013) Nodule cluster cultures and temporary immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Sci Hortic 151:38–45

    Article  CAS  Google Scholar 

  • Slazak B, Sliwinska E, Saługa M, Ronikier M, Bujak J, Słomka A, Goransson U, Kuta E (2015) Micropropagation of Viola uliginosa (Violaceae) for endangered species conservation and for somaclonal variation-enhanced cyclotide biosynthesis. Plant Cell Tissue Organ Culture 120:179–190

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Steiner N, Farias-Soares FL, Schmidt EC, Pereira MLT, Scheid B, Rogge-Renner GD, Bouzon ZL, Schmidt D, Maldonado S, Guerra MP (2016) Toward establishing a morphological and ultrastructural characterization of proembryogenic masses and early somatic embryos of Araucaria angustifolia (Bert.) O. Kuntze. Protoplasma 253:487–501

    Article  CAS  PubMed  Google Scholar 

  • Teng WL (1997) An alternative propagation method of Ananas comosus trough nodule culture. Plant Cell Rep 16:454–457

    CAS  Google Scholar 

  • Tevini M, Steinmfiller D (1985) Composition and function of plastoglobuli II. Lipid composition of leaves and plastoglobuli during beech leaf senescence. Planta 163:91–96

    Article  CAS  PubMed  Google Scholar 

  • Tichá I, Radochová B, Kadlecek P (1999) Stomatal morphology during acclimatization of tobacco plantlets toe × vitro conditions. Biol Plant 42:469–474

    Article  Google Scholar 

  • van der Schoot C, Rinne P (1999) Networks for shoot design. Trends Plant Sci 4:31–37

    Article  PubMed  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  CAS  PubMed  Google Scholar 

  • Wick SM, Seagull RW, Osborn M, Weber K, Gunning BES (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89:685–690

    Article  CAS  PubMed  Google Scholar 

  • Woo SM, Wetzstein HY (2008) Morphological and histological evaluations of in vitro regeneration in Elliottia racemosa leaf explants induced on media with thidiazuron. J Am Soc Hortic Sci 133:167–172

    Google Scholar 

  • Yeung EC (1999) The use of histology in the study of plant tissue culture systems—some practical comments. In Vitro Cell Dev Biol Plant 35:137–143

    Article  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13:12–13

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council for Scientific and Technological Development (CNPq, Brazil), Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), and FAPESC (Proc. 2780/2012-4). The authors acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Plant Anatomy Laboratory (LAVEG) and Physiology Laboratory of Plant Development and Genetics (LFDGV) of the Federal University of Santa Catarina, Brazil.

Author contributions

TVS planned and designed all experiments, performed in vitro cultures, performed anatomical studies, collected and analyzed data, wrote manuscript, prepared figures; JFT maintained the cultures of plant material, collected data, contributed to manuscript writing; MPG performed analyzes of in vitro culture and anatomical studies, and contributed to manuscript writing; MS contributed in the planning of the experiments, performed anatomical studies, analyzed data and contributed to manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaysi Ventura de Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, T.V., Thiesen, J.F., Guerra, M.P. et al. Morpho- and histodifferentiation of shoot regeneration of Billbergia zebrina (Helbert) Lindley nodular cultures. Plant Cell Tiss Organ Cult 127, 393–403 (2016). https://doi.org/10.1007/s11240-016-1061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1061-y

Keywords

Navigation