Skip to main content
Log in

Efficient regeneration and transformation of Spathiphyllum cannifolium

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient and stable transformation system was developed based on embryogenic cell suspension culture by Agrobacterium tumefaciens-mediated method in Spathiphyllum cannifolium. Embryogenic calli induced from leaves on MS medium with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L thidiazuron were incubated in liquid medium with identical growth regulators for suspension cultivation. The plantlet regeneration rate of embryogenic suspension cell aggregates (ESCAs) incubated on MS medium achieved 100 %. The ESCAs were transformed using A. tumefaciens strain EHA105 harboring a vector pCAMBIA1301 containing the β-glucuronidase (gusA) reporter gene and the hygromycin phosphotransferase II (hpt II) selection marker gene. The optimized transformation conditions were as follows: infiltration of ESCAs with Agrobacterium for 10 min under 60 kPa vacuum pressure, followed by co-cultivation on medium containing 200 μM acetosyringone for 3 days. In total, 858 plants were regenerated from 1200 infected ESCAs. Analyses of randomly selected regenerated plants by GUS assays, PCR and dot blot showed that 91.30 % were transgenic. Southern blot analyses revealed that the copy number of T-DNAs integrated into the genome ranged from one to three. This newly developed transformation system provides a basis for the future development of genetic engineering techniques to improve flower color and enhance the disease resistance of peace lily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrade GM, Nairn CJ, Le HT, Merkle SA (2009) Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation. Plant Cell Rep 28:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, Manickavasagam M, Ganapathi A (2015) Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in indian soybean cultivars. Appl Biochem Biotechnol 175:2266–2287

    Article  CAS  PubMed  Google Scholar 

  • Ban HF, Chai XL, Lin YJ, Zhou Y, Peng DH, Zhou Y, Zou YL, Yu ZN, Sun M (2009) Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep 28:1847–1855

    Article  CAS  PubMed  Google Scholar 

  • Bunting GS (1960) A revision of Spathiphyllum (Araceae)-Mem. New York. Bot Gard 10:1–54

    Google Scholar 

  • Carlos-Hilario LR, Christopher DA (2015) Improved Agrobacterium-mediated transformation of Carica papaya cultivar ‘Kapoho’ from embryogenic cell suspension cultures. In Vitro Cell Dev Biol-Plant 51:580–587

    Article  CAS  Google Scholar 

  • Chen J, McConnell DB, Norman DJ, Henny RJ (2005) The foliage plant industry. In: Janick J (ed) Horticultural reviews, vol 31. Wiley, Hoboken, pp 45–110

    Google Scholar 

  • Chong-Pérez B, Reyes M, Rojas L, Ocaňa B, Pérez B, Kosky RG, Angenon G (2012) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in banana cv. ‘Dwarf Cavendish’ (Musa AAA): effect of spermidine on transformation efficiency. Plant Cell Tissue Org Cult 111:79–90

    Article  Google Scholar 

  • Dai LM, Zhou Q, Li RM, Du YJ, He J, Wang D, Cheng SY, Zhang JX, Wang YJ (2015) Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tissue Org Cult 121:397–412

    Article  CAS  Google Scholar 

  • Dewir YH, Chakrabarty D, Hahn EJ, Paek KY (2006a) A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. In Vitro Cell Dev Biol-Plant 42:291–297

    Article  CAS  Google Scholar 

  • Dewir YH, Hahn EJ, Paek KY (2006b) In vitro flowering of Spathiphyllum cannifolium: influences of gibberellic acid, culture type and sucrose concentration. Acta Hortic 725:107–116

    Article  CAS  Google Scholar 

  • Ding YH, Wei LW (1999) Tissue culture and propagation from petiole of Spathiphyllum palls. Acta Hortic Sin 26:345–346 (in Chinese)

    Google Scholar 

  • Dutt M, Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep 29:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Eeckhaut T, Werbrouck S, Dendauw J, Van Bockstaele E, Debergh P (2001) Induction of homozygous Spathiphyllum wallisii genotypes through gynogenesis. Plant Cell Tissue Org Cult 67:181–189

    Article  CAS  Google Scholar 

  • Eeckhaut T, Werbrouck S, Leus L, Van Bockstaele E, Debergh P (2004) Chemically induced polyploidization of Spathiphyllum wallisii Regel through somatic embryogenesis. Plant Cell Tissue Org Cult 78:241–246

    Article  CAS  Google Scholar 

  • Fan M, Zhang RL (2003) Tissue culture and rapid propagation of Spathiphyllum floribundum. Plant Physiol Commun 39:477 (in Chinese)

    Google Scholar 

  • Fitch MMM, Leong TCW, He XL, McCafferty HRK, Zhu YJ, Moore PH, Gonsalves D, Aldwinckle HS, Atkinson HJ (2011) Improved transformation of Anthurium. Hort Sci 46(3):358–364

    CAS  Google Scholar 

  • Fonnesbech M, Fonnesbech A (1979) In vitro propagation of Spathiphyllum. Sci Hortic 10:21–25

    Article  Google Scholar 

  • Gill R, Saxena PK (1993) Somatic embryogenesis in Nicotiana tabacum L.: induction by thidiazuron of direct embryo differentiation from cultural leaf discs. Plant Cell Rep 12:154–159

    Article  CAS  PubMed  Google Scholar 

  • González AE, Schöpke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17:827–831

    Article  Google Scholar 

  • He XL, Miyasaka SC, Fitch MMM, Moore PH, Zhu YJ (2008) Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep 27:903–909

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Wei ZM (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Org Cult 83:187–200

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha P, Shashi Rustagi A, Agnihotri PK, Kulkarni VM, Bhat V (2011) Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tissue Org Cult 107:501–512

    Article  CAS  Google Scholar 

  • Kim YG, Sharmin SA, Alam I, Kim KH, Kwon SY, Sohn JH, Kim SH, Liu GS, Lee BH (2013) Agrobacterium-mediated transformation of reed (Phragmites communis Trinius) using mature seed-derived calli. GCB Bioenergy 5:73–80

    Article  CAS  Google Scholar 

  • Kotsuka K, Tada Y (2008) Genetic transformation of golden pothos (Epipremnum aureum) mediated by Agrobacterium tumefaciens. Plant Cell, Tissue Organ Cult 95:305–311

    Article  CAS  Google Scholar 

  • Lakshmanan PS, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2012) Embryogenic callus formation from the petioles of Spathiphyllum wallisii. Acta Hortic 961:231–234

    Article  Google Scholar 

  • Li FS, Li MY, Zhan C, Wang SH (2015) A reliable and high-efficiency Agrobacterium tumefaciens-mediated transformation system of Pogonatherum paniceum embryogenic callus using GFP as a reporter gene. Plant Cell Tissue Org Cult 120:155–165

    Article  CAS  Google Scholar 

  • Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A (2015) Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Rep 34:1835–1848

    Article  CAS  PubMed  Google Scholar 

  • Michalczuk L, Druart P (1999) Indole-3-acetic acid metabolism in hormoneautotrophic, embryogenic callus of Inmil (R) cherry rootstock (Prunus incisa × serrula ‘GM 9’) and in hormone-dependent, non-embryogenic calli of Prunus incisa × serrula and Prunus domestica. Physiol Plant 107:426–432

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol-Plant 34:267–275

    Article  CAS  Google Scholar 

  • Nadel BL, Altman A, Liv M (1990) Regulation of somatic embryogenesis in celery cell suspension 2. Early delection of embryogenic potential and the induction of synchronized cell cultures. Plant Cell Tissue Organ Cult 20:119–124

    Article  Google Scholar 

  • Nanasato Y, Konagaya KI, Okuzaki A, Tsuda M, Tabei Y (2013) Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Rep 7:267–276

    Article  PubMed  Google Scholar 

  • Orlikowska T, Sabala I, Nowak E (1995) Adventitious shoot regeneration on explants of Anthurium, Codiaeum, Dieffenbachia, Gerbera, Rosa and Spathiphyllum for breeding purposes. Acta Hortic 420:115–117

    Article  CAS  Google Scholar 

  • Pallavi CM, Rekha R, Neelambika TM (2011) Indirect somatic embryogenesis from petiole segment in strawberry cv. Sweet Charlie. Indian J Hortic 68:24–27

    Google Scholar 

  • Parrott WA (1991) Auxin-stimulated somatic embryogenesis from immature cotyledons of white cover. Plant Cell Rep 210:17–21

    Google Scholar 

  • Pasternak T, Miskolczi P, Ayaydin F, Meszaros T, Dudits D, Feher A (2000) Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul 32:129–141

    Article  CAS  Google Scholar 

  • Qi YY, Du LJ, Quan YH, Tian FF, Liu YL, Wang YJ (2014) Agrobacterium-mediated transformation of embryogenic cell suspension cultures and plant regeneration in Lilium tenuifolium oriental × trumpet ‘Robina’. Acta Physiol Plant 36:2047–2057

    Article  CAS  Google Scholar 

  • Qin JY (2005) Induction of somatic embryogenesis on the anther filament and rapid propagation of Spathiphyllum cannifolium L. Chin Agric Sci Bull 21:67–69 (in Chinese)

    Google Scholar 

  • Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM, Cleveland TE (2000) High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep 19:539–545

    Article  CAS  Google Scholar 

  • Ramirez-Malagon R, Borodanenko A, Barrera-Guerra JL, Ochoa-Alejo N (2001) Shoot number and shoot size as affected by growth regulators in in vitro cultures of Spathiphyllum floribundum L. Sci Hortic 89:227–236

    Article  Google Scholar 

  • Ran YD, Patron N, Yu Q, Georges S, Mason J, Spangenberg G (2014) Agrobacterium-mediated transformation of Lolium rigidum Gaud. Plant Cell Tissue Org Cult 118:67–75

    Article  CAS  Google Scholar 

  • Reis A, Mafia RG, Silva PP, Lopes CA, Alfenas AC (2004) Cylindrocladium spathiphylli, causal agent of Spathiphyllum root and collar rot in the Federal District-Brazil. Phytopathology 29:102

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA space length polymophisms in barly: mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoulties CL, Ei-Gholl NE (1980) Pathagenicity of Cylindrocladium floridamum on Spathiphyllum sp. cv. clevelandii. Proc State Hort Soc 93:183–186

    Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L, Bapat VA, Rathore TS (2008) Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. Plant Cell Tissue Org Cult 92:261–271

    Article  CAS  Google Scholar 

  • Stevens ME, Pijut PM (2014) Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda. Plant Cell Rep 33:861–870

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA, Giang DTT, Tanaka M (2006) Novel photoautotrophic micropropagation of Spathiphyllum. Photosynthetica 44:53–61

    Article  Google Scholar 

  • Torreblanca R, Cerezo S, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tissue Org Cult 103:61–69

    Article  CAS  Google Scholar 

  • Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J (1975) Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26:33–48

    Article  CAS  PubMed  Google Scholar 

  • Werbrouck S, Eeckhaut T, Debergh P (2000) Induction and conversion of somatic embryogenesis on the anther filament of Spathiphyllum Schott. Acta Hortic 520:263–269

    Article  Google Scholar 

  • Yu B, Zhai H, Wang YP, Zang N, He SZ, Liu QC (2007) Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.) Lam. Plant Cell Tissue Org Cult 90:265–273

    Article  CAS  Google Scholar 

  • Zdravković-Korać S, Milojević J, Lj Tubić, Ćalić-Dragosavac D, Mitić N, Vinterhalter B (2010) Somatic embryogenesis and plant regeneration from root sections of Allium schoenoprasum L. Plant Cell Tissue Org Cult 101:237–244

    Article  Google Scholar 

  • Zhao JT, Cui J, Liu JX, Liao FX, Henny RJ, Chen JJ (2012) Direct somatic embryogenesis from leaf and petiole explants of Spathiphyllum ‘Supreme’ and analysis of regenerants using flow cytometry. Plant Cell Tissue Org Cult 110:239–249

    Article  Google Scholar 

  • Zhao JT, Li ZJT, Cui J, Henny RJ, Gray DJ, Xie JH, Chen JJ (2013) Efficient somatic embryogenesis and Agrobacterium-mediated transformation of pothos (Epipremnum aureum) ‘Jade’. Plant Cell Tissue Org Cult 114:237–247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by the Guangdong Planning Project of Science and Technology (no. 2010B050600011). We thank Dr. Jianjun Chen (University of Florida, USA) for advice on experimental methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Liao, F., Liu, J. et al. Efficient regeneration and transformation of Spathiphyllum cannifolium . Plant Cell Tiss Organ Cult 127, 325–334 (2016). https://doi.org/10.1007/s11240-016-1052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1052-z

Keywords

Navigation