Skip to main content
Log in

Salicylic acid-induced cytosolic acidification increases the accumulation of phenolic acids in Salvia miltiorrhiza cells

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is an elicitor widely used to promote the synthesis of secondary metabolites. In order to determine the relevance between SA-induced pH changes and secondary metabolite synthesis, Salvia miltiorrhiza suspension cells were exposed to either SA, fusicoccin (FC), sodium orthovanadate (OVA), methylamine (ME) and their combination (FC+SA and ME+SA) for investigating the effect of cytosolic pH change on phenolic acids production, such as caffeic acid (CA), rosmarinic acid (RA), and salvianolic acid B (Sal B). The variations of cytosolic pH were sensed by using the fluorescent probe BCECF-AM, and combination with laser scanning confocal microscopic technique. Meanwhile, the genes expression of phenylalanine ammonia-lyase (PAL), tyrosine aminotransferase (TAT), and rosmarinic acid synthase (RAS) were determined using real time PCR. The contents of CA, RA, and Sal B were measured by high performance liquid chromatography. The results showed that SA decreased the cytosolic pH by inhibiting the activity of plasma membrane H+-ATPase. OVA induced cytosolic acidification too, while both FC and ME inhibited the acidification induced by SA. SA also up-regulated the genes expression of TAT, PAL, and RAS, and as a result enhanced the accumulation of those phenolic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SA:

Salicylic acid

FC:

Fusicoccin

OVA:

Orthovanadate

ME:

Methylamine

CA:

Caffeic acid

RA:

Rosmarinic acid

Sal B:

Salvianolic acid B

PAL:

Phenylalanine ammonia-lyase

TAT:

Tyrosine aminotransferase

RAS:

Rosmarinic acid synthase

4CL:

4-coumarate: coenzyme A ligase

References

  • Andreas S, Claudia O (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11(2):263–272

    Google Scholar 

  • Armero J, Tena M (2001) Possible role of plasma membrane H+-ATPase in the elicitation of phytoalexin and related isoflavone root secretion in chickpea (Cicer arietinum L.) seedlings. Plant Sci 161(4):791–798. doi:10.1016/S0168-9452(01)00472-1

    Article  CAS  Google Scholar 

  • Bassolino L, Giacomelli E, Giovanelli S, Pistelli L, Cassetti A, Damonte G, Bisio A, Ruffoni B (2015) Tissue culture and aromatic profile in Salvia dolomitica Codd. Plant Cell Tiss Organ Cult 121:83–95. doi:10.1007/s11240-014-0681-3

    Article  CAS  Google Scholar 

  • Beffagna N, Romani G, Meraviglia G, Pallini S (1997) Effects of abscisic acid and cytoplasmic pH on potassium and chloride efflux in Arabidopsis thaliana seedlings. Plant Cell Physiol 38(5):503–510

    Article  CAS  PubMed  Google Scholar 

  • Benouaret R, Goujon E, Goupil P (2014) Grape marc extract causes early perception events, defence reactions and hypersensitive response in cultured tobacco cells. Plant Physiol Biochem 77(2):84–89. doi:10.1016/j.plaphy.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  • Callaham DA, Hepler PK (1991) Measurement of Free calcium in plant cells. Oxford IRL Press, New York, pp 383–410

    Google Scholar 

  • Chinese Pharmacopoeia Commission (2010) Chinese Pharmacopoeia. Chemical Industry Press, Beijing, pp 70–71

    Google Scholar 

  • Cork RJ (1986) Problems with the application of quin-2-AM to measuring cytoplasmic free calcium in plant cells. Plant, Cell Environ 9(2):157–161

    Article  CAS  Google Scholar 

  • Danielle L, Yves M, Jean G, Christiane L (1998) Increase of defense gene transcripts by cytoplasmic acidification in tobacco cell suspensions. Planta 205(3):452–458

    Article  Google Scholar 

  • Dong JA, Wan GW, Liang ZS (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell cultures. J Biotechnol 148(2–3):99–104. doi:10.1016/j.jbiotec.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  • Du GH, Zhang JT (2000) Water soluble active ingredients of Danshen: review on the Salvianolic acids. Basic Med Sci Clin 20(5):10–14

    Google Scholar 

  • Felix G, Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J. 7(3):381–389. doi:10.1046/j.1365-313X.1995.7030381.x

    Article  CAS  Google Scholar 

  • Gonugunta VK, Srivastava N, Puli MR, Raghavendra AS (2008) Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant, Cell Environ 31(11):1717–1724. doi:10.1111/j.1365-3040.2008.01872.x

    Article  CAS  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147(3):743–749. doi:10.1016/j.envpol.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  • Hagendoorn MJM, Wagner AM, Segers G, Vanderplas LHW, Oostdam A, Vanwalraven HS (1994) Cytoplasmic acidification and secondary metabolite production in different plant cell suspensions. Plant Physiol 106(2):723–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao WF, Guo HB, Zhang JY, Hu GG, Yao YQ, Dong JE (2014) Hydrogen peroxide is involved in salicylic acid-elicited rosmarinic acid production in Salvia miltiorrhiza cell cultures. Sci World J 2014:843764. doi:10.1155/2014/843764

    Article  Google Scholar 

  • Hou XM, Shao FJ, Ma YM, Lu SF (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40(7):4301–4310. doi:10.1007/s11033-013-2517-3

    Article  CAS  PubMed  Google Scholar 

  • Isfort RJ, Cody DB, Asquith TN, Ridder GM, Stuard SB, Leboeuf RA (1993) Induction of protein-phosphorylation, protein-synthesis, immediate-early-gene expression and cellular proliferation by intracellular pH modulation-implications for the role of hydrogen ions in signal transduction. Eur J Biochem 213(1):349–357. doi:10.1111/j.1432-1033.1993.tb17768.x

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wei F, Wang L, Liu H, Liang Y, Liu A (2009) Activation of reactive oxygen species and defense responses in tobacco cells treated with riboflavin. Sci Agric Sinica 42(12):4175–4181. doi:10.3864/j.issn.0578-1752.2009.12.007

    CAS  Google Scholar 

  • Ma PD, Liu JL, Zhang CL, Liang ZS (2013) Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl Biochem Biotechnol 170(6):1253–1262. doi:10.1007/s12010-013-0265-4

    Article  CAS  PubMed  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250(4983):1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163(2):166–178. doi:10.1016/j.jbiotec.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  • Meijer HJ, ter Riet B, van Himbergen JA, Musgrave A, Munnik T (2002) KCl activates phospholipase D at two different concentration ranges: distinguishing between hyperosmotic stress and membrane depolarization. Plant J. 31(1):51–59. doi:10.1046/j.1365-313X.2002.01336.x

    Article  CAS  PubMed  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell. 21(8):2341–2356. doi:10.1105/tpc.109.068395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palta JP, Li PH (1978) Cell membrane properties in relation to freezing injury. Plant cold hardiness and freezing stress. P. H. L. Sakai, Academic Press, New York, pp 93–115

    Book  Google Scholar 

  • Petersen M, Hausler E, Karwatzki B, Meinhard J (1992) Proposed biosynthetic-pathway for rosmarinic acid in cell-cultures of coleus-blumei benth. Planta 189(1):10–14

    Google Scholar 

  • Petersen M, Hausler E, Meinhard J, Karwatzki B, Gertlowski C (1995) The biosynthesis of rosmarinic acid in suspension-cultures of coleus blumei. Plant Cell, Tissue Organ Cult 38(2–3):171–179

    Google Scholar 

  • Sakano K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic on in defense reaction and secondary metabolism. Int Rev Cytol 206:1–44. doi:10.1016/S0074-7696(01)06018-1

    Article  CAS  PubMed  Google Scholar 

  • Scott AC, Allen NS (1999) Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol 121(4):1291–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed populus euphratica cells. Plant, Cell Environ 33(6):943–958. doi:10.1111/j.1365-3040.2010.02118.x

    Article  CAS  Google Scholar 

  • Vaccaro M, Malafronte N, Alfieri M, De Tommasi N, Leone A (2014) Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots. Plant Cell, Tissue Organ Cult 119:65–77. doi:10.1007/s11240-014-0514-4

    Article  CAS  Google Scholar 

  • Vicente MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338. doi:10.1093/jxb/err031

    Article  Google Scholar 

  • Viehweger K, Dordschbal B, Roos W (2002) Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes. Plant Cell Online 14(7):1509–1525. doi:10.1105/tpc.002329

    Article  CAS  Google Scholar 

  • Weiner ID, Hamm LL (1989) Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am J Physiol 256(5 Pt 2):F957–F964

    CAS  PubMed  Google Scholar 

  • Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration, and root-growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol 99(2):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SC, Yan Y, Wang BQ, Liang ZS, Liu Y, Liu FH, Qi ZH (2014a) Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. J Biosci Bioeng 117(5):645–651. doi:10.1016/j.jbiosc.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yan YP, Wu YC, Hua WP, Chen C, Ge Q, Wang ZZ (2014b) Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metab Eng 21(1):71–80. doi:10.1016/j.ymben.2013.10.009

    Article  PubMed  Google Scholar 

  • Zhu N, Liu J, Zhang XY, Dong JA (2014a) Preparation and vitality detection of protoplast in Salvia miltiorrhiza Bunge. Chin J Biotech 230(10):1612–1621. doi:10.13345/j.cjb.140014

    Google Scholar 

  • Zhu Y, Ge XM, Wu MM, Li X, He JM (2014b) The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis. Plant Sci 215–216(3):84–90. doi:10.1016/j.plantsci.2013.11.010

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31170274), Chinese Universities Scientific Fund (QN2013035), Natural Science Basic Research Plan in Shaanxi Province of China (2013JQ3006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juane Dong.

Additional information

Xiuhong Li and Hongbo Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Guo, H., Qi, Y. et al. Salicylic acid-induced cytosolic acidification increases the accumulation of phenolic acids in Salvia miltiorrhiza cells. Plant Cell Tiss Organ Cult 126, 333–341 (2016). https://doi.org/10.1007/s11240-016-1001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1001-x

Keywords

Navigation