Skip to main content
Log in

In vitro organogenesis of Cedrela fissilis Vell. (Meliaceae): the involvement of endogenous polyamines and carbohydrates on shoot development

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cytokinins are essential molecules involved in shoot induction during in vitro propagation. The addition of cytokinins into culture medium may modulate the endogenous metabolism of various compounds that play important roles during in vitro organogenesis responses, such as carbohydrates and polyamines (PAs). The effects of 6-benzyladenine (BA) and the type of explant (apical and cotyledonary nodal segments) on shoot development and the endogenous content of carbohydrates and free PAs were analyzed during the in vitro culture of Cedrela fissilis. BA addition (2.5 µM) into the culture medium was essential to increase both the number of shoots arising from the apical nodal segments and the length of the shoots arising from the cotyledonary nodal segments. Increased endogenous glucose was associated with an increased shoot length in the shoots derived from the cotyledonary nodal segments cultured with BA. On the other hand, increased endogenous sucrose was associated with reduced shoot production by apical nodal segments cultured without BA. Supplementation of the culture medium with BA increased the endogenous content of free putrescine in the apical nodal segments and increased the number of shoots produced compared to nodes cultured without BA. Total free PAs was increased in those treatments that increased the number of shoots produced. This work is the first to report the relationship between the addition of BA to the culture medium and the endogenous contents of soluble carbohydrates and free PAs during the in vitro propagation of tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BA:

6-Benzyladenine

FM:

Fresh matter

HPLC:

High performance liquid chromatography

PAs:

Polyamine

MS:

Murashige and Skoog

PGRs:

Plant growth regulators

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

References

  • Ahn IO, VanLe B, Gendy C, Van KTT (1996) Direct somatic embryogenesis through thin cell layer culture in Panax ginseng. Plant Cell Tissue Organ Cult 45:237–243

    Article  CAS  Google Scholar 

  • Al-Khalifah NS, Hadi S, Khan F (2005) Influence of sucrose concentration on in vitro growth of five rose (Rosa hybrida L.) cultivars. Plant Tissue Cult 15:43–49

    Google Scholar 

  • Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014) Optimized shoot regeneration for Indian soybean: the influence of exogenous polyamines. Plant Cell Tissue Organ Cult 117:305–309

    Article  CAS  Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and vitro development. In Vitro Cell Dev Biol Plant 44:384–395

    Article  CAS  Google Scholar 

  • Borthakur A, Das SC, Kalita MC, Sen P (2011) In vitro plant regeneration from apical buds of Albizzia odoratissima (Lf) Benth. Adv Appl Sci Res 2:457–464

    CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bozena B, Szczerba J (1991) Influence of different carbon sources on invertase activity and growth of sour cherry (Prunus cerasus L.) shoot cultures. J Exp Bot 42:911–915

    Article  Google Scholar 

  • Bunn E, Turner SR, Dixon KW (2011) Biotechnology for saving rare and threatened flora in a biodiversity hotspot. In Vitro Cell Dev Biol Plant 47:188–200

    Article  Google Scholar 

  • Carone SB, Santa-Catarina C, Silveira V, Floh EIS (2010) Polyamine patterns in haploid and diploid tobacco tissues and in vitro cultures. Braz Arch Biol Technol 53:409–417

    Article  CAS  Google Scholar 

  • Carrier DJ, Kendall EJ, Bock CA, Cunningham JE, Dunstan DI (1999) Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. J Exp Bot 50:1359–1364

    Article  CAS  Google Scholar 

  • Dutra NT, Silveira V, Azevedo IGd, Gomes-Neto LR, Facanha AR, Steiner N, Guerra MP, Floh EIS, Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol Plant 148:121–132

    Article  CAS  PubMed  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377

    Article  CAS  PubMed  Google Scholar 

  • Faria GA, Costa M, Ledo CAS, Junghans TG, Souza AS, Cunha MAP (2007) Culture medium and type of explant in the in vitro establishment of passion fruit species. Bragantia 66:535–543

    Article  Google Scholar 

  • Fatima Z, Mujib A, Fatima S, Arshi A, Umar S (2009) Callus induction, biomass growth, and plant regeneration in Digitalis lanata Ehrh.: influence of plant growth regulators and carbohydrates. Turk J Bot 33:393–405

    Google Scholar 

  • Filson PB, Dawson-Andoh BE (2009) Characterization of sugars from model and enzyme-mediated pulp hydrolyzates using high-performance liquid chromatography coupled to evaporative light scattering detection. Bioresour Technol 100:6661–6664

    Article  CAS  PubMed  Google Scholar 

  • Francisco AA, Tavares AR, Kanashiro S, Ramos PRR, Lima GPP (2008) Plant growth regulators in polyamines endogenous levels during the development of taro cultivated in vitro. Cienc Rural 38:1251–1257

    Article  CAS  Google Scholar 

  • Fuentes SRL, Calheiros MBP, Manetti J, Vieira LGE (2000) The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult 60:5–13

    Article  CAS  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Gemas V, Bessa A (2006) Influence of various carbohydrates in shoot development in nodal culture of Guinean Anacardium occidentale genotypes. Plant Cell Tissue Organ Cult 85:103–108

    Article  CAS  Google Scholar 

  • Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees-Struct Funct 18:115–135

    Article  Google Scholar 

  • Hartmann HT, Kester DE, Davies Júnior FT, Geneve RL (2002) Plant propagation: principles and practices, 7th edn. Prentice-Hall, New Jersey

    Google Scholar 

  • IUCN (2015) The IUCN Red List of Threatened species. International Union for Conservation of Nature. http://www.iucnredlist.org. Accessed 25 Feb 2015

  • Jeannin G, Bronner R, Hahne G (1995) Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annum L.) cultivated in vitro: role of the sugar. Plant Cell Rep 15:200–204

    CAS  PubMed  Google Scholar 

  • Joshi I, Bisht P, Sharma VK, Uniyal DP (2003) Studies on effect of nutrient media for clonal propagation of superior phenotypes of Dalbergia sissoo Roxb. through tissue culture. Silvae Genet 52:143–147

    Google Scholar 

  • Katerova ZI, Todorova D (2009) Endogenous polyamines lessen membrane damages in pea plants provoked by enhanced ultraviolet-C radiation. Plant Growth Regul 57:145–152

    Article  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Kusumastuti MY, Bhatt A, Indrayanto G, Keng CL (2014) Effect of sucrose, benzylaminopurine and culture condition on in vitro propagation of Curcuma xanthorrhiza roxb. and Zingiber aromaticum val. Pak J Bot 46:280–289

    Google Scholar 

  • Li ZL, Burritt DJ (2003) Changes in endogenous polyamines during the formation of somatic embryos from isogenic lines of Dactylis glomerata L. with different regenerative capacities. Plant Growth Regul 40:65–74

    Article  CAS  Google Scholar 

  • Maki H, Ando S, Kodama H, Komamine A (1991) Polyamines and the cell cycle of Catharanthus roseus cells in culture. Plant Physiol 96:1008–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohebalipour N, Aharizad S, Mohammadi SA, Motallebiazar AR, Arefi HM (2012) Effect of plant growth regulators BAP and IAA on micropropagation of Iranian lemon balm (Melissa officinalis L.) landraces. Food Agric Environ 10:280–286

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naija S, Elloumi N, Ammar S, Kevers C, Dommes J (2009) Involvement of polyamines in the adventitious rooting of micropropagated shoots of the apple rootstock MM106. In Vitro Cell Dev Biol Plant 45:83–91

    Article  CAS  Google Scholar 

  • Nakagawa H, Saijyo T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci Hortic 90:85–92

    Article  CAS  Google Scholar 

  • Nicioli PM, Paiva R, Nogueira RC, Santana JRF, Silva LC, Silva DPCd, Porto JMP (2008) Adjustment of the process of micropropagation of Stryphnodendron adstringens (Mart.) Coville. Cienc Rural 38:685–689

    Article  CAS  Google Scholar 

  • Niemi K, Sarjala T, Chen X, Häggman H (2002) Spermidine and methylglyoxal bis(guanylhydrazone) affect maturation and endogenous polyamine content of Scots pine embryogenic cultures. J Plant Physiol 159:1155–1158

    Article  CAS  Google Scholar 

  • Noceda C, Salaj T, Perez M, Viejo M, Canal MJ, Salaj J, Rodriguez R (2009) DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture. Trees-Struct Funct 23:1285–1293

    Article  CAS  Google Scholar 

  • Nunes EC, Castilho CV, Moreno FN, Viana AM (2002) In vitro culture of Cedrela fissilis Vellozo (Meliaceae). Plant Cell Tissue Organ Cult 70:259–268

    Article  CAS  Google Scholar 

  • Paiva Neto VBd, Mota TRd, Otoni WC (2003) Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell Tissue Organ Cult 75:159–167

    Article  Google Scholar 

  • Papadakis AK, Paschalidis KA, Roubelakis-Angelakis KA (2005) Biosynthesis profile and endogenous titers of polyamines differ in totipotent and recalcitrant plant protoplasts. Physiol Plant 125:10–20

    Article  CAS  Google Scholar 

  • Parimalan R, Giridhar P, Ravishankar G (2011) Enhanced shoot organogenesis in Bixa orellana L. in the presence of putrescine and silver nitrate. Plant Cell Tissue Organ Cult 105:285–290

    Article  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pieruzzi F, Dias L, Balbuena T, Santa-Catarina C, Dos Santos A, Floh EIS (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pijut PM, Lawson SS, Michler CH (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147

    Article  Google Scholar 

  • Pijut PM, Beasley RR, Lawson SS, Palla KJ, Stevens ME, Wang Y (2012) In vitro propagation of tropical hardwood tree species—a review (2001–2011). Prop Ornam Plants 12:25–51

    Google Scholar 

  • Ramesh M, Umate P, Rao KV, Sadanandam A (2005) Micropropagation of Terminalia bellirica Roxb.—a sericulture and medicinal plant. In Vitro Cell Dev Biol Plant 41:320–323

    Article  Google Scholar 

  • Ribas LLF, Zanette F, Kulchetscki L, Guerra MP (2005) Micropropagation of Aspidosperma polyneuron from single node culture of juvenile material. Rev Arvore 29:517–524

    Article  Google Scholar 

  • Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Maciel S, Pedrotti EL (2001) In vitro germination and somatic embryogenesis from immature embryos of “canela sassafrás” (Ocotea odorifera Mez). Rev Bras Bot 24:501–510

    Article  Google Scholar 

  • Santa-Catarina C, Silveira V, Balbuena TS, Viana AM, Estelita MEM, Handro W, Floh EI (2006) IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul 49:237–247

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Scherer GF, Floh EIS (2007) Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis. Plant Cell Tissue Organ Cult 90:93–101

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Guerra M, Steiner N, Macedo A, Floh E, dos Santos A (2012) The use of somatic embryogenesis for mass clonal propagation and biochemical and physiological studies in woody plants. Curr Top Plant Biol 13:103–119

    CAS  Google Scholar 

  • Silva PPd, Contim LAS, Freitas DVd, Aride PHR, Santos ALWd (2010) In vitro establishment of kapok tree (Ceiba pentandra L. gaertn) apical shoots. Sci Agrar 11:437–443

    Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, Scherer GF, Handro W, Guerra MP, Floh EI (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98

    Article  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Biol 51:49–81

    Article  CAS  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:273–278

    Article  Google Scholar 

  • Sokal R, Rohlf F (1995) Biometry. WH Freeman, New York

    Google Scholar 

  • Steiner N, Santa-Catarina C, Silveira V, Floh EI, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62

    Article  CAS  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  PubMed  Google Scholar 

  • Uzelac B, Janošević D, Stojičić D, Budimir S (2012) Effect of cytokinins on shoot apical meristem in Nicotiana tabacum. Arch Biol Sci 64:511–516

    Article  Google Scholar 

  • Vasudevan A, Selvaraj N, Ganapathi A, Kasthurirengan S, Anbazhagan VR, Manickavasagam M, Choi CW (2008) Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). In Vitro Cell Dev Biol Plant 44:300–306

    Article  CAS  Google Scholar 

  • Vondráková Z, Eliášová K, Vágner M, Martincová O, Cvikrová M (2015) Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant Growth Regul 75:405–414

    Article  Google Scholar 

  • Zhang P, Fu J, Hu L (2012) Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass. Ecotoxicology 21:1911–1918

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the National Council for Scientific and Technological Development (CNPq) (476465/2011-7 and 305645/2013-7) and Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (FAPERJ) (E26/112.055/2011, E26/110.390/2012, E26/111.389-2012, E26/102.989/2012, E26/010.001507/2014). VPMA thanks Coordination for the Improvement of Higher Education Personnel (CAPES), and YRSR thanks CNPq for the fellowship.

Author contribution

C. S. C., V. S. and V. P. M. A. conceived the study, designed the experiments and wrote the manuscript. V. P. M. A. and Y. R. S. R. were responsible for the in vitro culture data. V. P. M. A. analyzed the carbohydrates and PAs and performed the statistical analyses. R. S. R. collaborated on the carbohydrate analysis by HPLC. E. I. S. F. and A. F. M. were responsible for the analysis of PAs. All of the authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudete Santa-Catarina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragão, V.P.M., de Souza Ribeiro, Y.R., Reis, R.S. et al. In vitro organogenesis of Cedrela fissilis Vell. (Meliaceae): the involvement of endogenous polyamines and carbohydrates on shoot development. Plant Cell Tiss Organ Cult 124, 611–620 (2016). https://doi.org/10.1007/s11240-015-0919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0919-8

Keywords

Navigation