Skip to main content
Log in

Antiporter NHX2 differentially induced in Mesembryanthemum crystallinum natural genetic variant under salt stress

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plants exhibit several mechanisms to survive under high salinity conditions. The uptake and compartmentalization of Na+ ion by the NHX antiporter is a crucial mechanism in homeostasis maintenance. Therefore, we evaluated McNHX2 gene expression and several physiological responses induced in three natural genetic variants of ice plants under salt stress. Based on morphology and growth behavior of wild type populations from an arid region of northwestern Mexico, we identified three ice plant natural genetic variants and called P0, P9, and P11. Several physiological parameters, such as water potential, relative water content, chlorophyll, and Na+ and K+ ion contents from all natural genetic variants exhibited a differential response under high salinity conditions. Specifically, the P0 variant showed lower water potential changes and least perturbation of Na+/K+ ratio than those of the P9 and P11 variants under saline conditions, suggesting that the P0 variant is the most salt tolerant. Unexpectedly, McNHX2 expression was repressed in the P11 variant while it was upregulated in the P0 and P9 variants under saline treatments. The McNHX2 gene was sequenced showing 15 introns and 16 exons; polymorphisms were found among the cDNAs sequences from the three natural genetic variants. All these data suggest that differential responses to high salinity involve different mechanisms operating in each variant for counteracting saline stress effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams P, Nelson DE, Yamada S et al (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138:171–190

    Article  CAS  Google Scholar 

  • Agari S, Shimoda T, Shimizy Y et al (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967

    Article  Google Scholar 

  • Aharon GS, Apse MP, Duan SL, Hua X, Blumwald E (2003) Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant Soil 253:245–256

    Article  CAS  Google Scholar 

  • Ahmad P, Azooz MM, Prasad MNV (2013) Ecophysiology and responses of plants under salt stress. Springer, New York

    Book  Google Scholar 

  • Al-Saady NA, Khan AJ, Rajesh L, Esechie HA (2012) Effect of salt stress on germination, proline metabolism and chlorophyll content of fenugreek (Trigonella foenum gracium L.). J Plant Sci 7:176–185

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Ballesteros E, Blumwald E, Donaire JP, Belver A (1997) Na+/H+ antiport activity in tonoplast enriched vesicles isolated from sunflower roots induced by salt stress. Physiol Plant 99:328–334

    Article  CAS  Google Scholar 

  • Barkla BJ, Zingarelli L, Blumwald E, Smith JAC (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol 109:549–556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Camacho-Emiterio J, Pantoja O (2002) Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct Plant Biol 29:1017–1024

    Article  CAS  Google Scholar 

  • Bassil E, Ohto MA, Esumi T, Tajima H et al (2011a) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassil E, Tajima H, Liang YC et al (2011b) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C et al (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311

    Article  CAS  Google Scholar 

  • Bowers K, Boaz PL, Patel FI, Stevens TH (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradfield J, Wyatt G (1983) X-linkage of a vitellogenin gene in Locusta migratoria. Chromosoma 88:190–193

    Article  Google Scholar 

  • Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–13405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Mezghani I (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  CAS  PubMed  Google Scholar 

  • Chen GH, Yan W, Yang LF et al (2014) Overexpression of StNHX1, a Novel Vacuolar Na+/H+ antiporter gene from Solanum torvum, enhances salt tolerance in transgenic vegetable soybean. Hort Environ Biotechnol 55:213–221

    Article  CAS  Google Scholar 

  • Cosentino C, Fischer-Schliebs E, Bertl A et al (2010) Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum. New Phytol 186:669–680

    Article  CAS  PubMed  Google Scholar 

  • Counillon L, Franchi A, Pouyssegur J (1993) A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc Natl Acad Sci USA 90:4508–4512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cushman JC, Agarie S, Albion RL et al (2008) Isolation and characterization of mutants of common ice plant deficient in crassulacean acid metabolism. Plant Physiol 147:228–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisa S, Hussing S, Geissler N, Koyro HW (2012) Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Aust J Crop Sci 6:357–368

    CAS  Google Scholar 

  • Fischer I, Steige KA, Stephan W, Mboup M (2013) Sequence evolution and expression regulation of stress-responsive genes in natural population of wild tomato. PLoS One 8:e78182. doi:10.1371/journal.pone.0078182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukada A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    Article  Google Scholar 

  • Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Adv Bot. doi:10.1155/2014/208747

    Google Scholar 

  • Guan R, Qu Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical and molecular characterization. Int J Genomics. doi:10.1155/2014/701596

    PubMed Central  PubMed  Google Scholar 

  • Hamaji K, Nagira M, Yoshida K et al (2009) Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol 50:2023–2033

    Article  CAS  PubMed  Google Scholar 

  • Han XH, Gao ZJ, Xiao XG (2009) Enzymes and genes involved in the betalain biosynthesis in higher plants. Afr J Biotechnol 8:6735–6744

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Jiang XY, Cubero B et al (2009) Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast. The endosome/prevacuolar compartment is a target for salt toxicity. J Biol Chem 284:14276–14285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Cal Agric Exp Stn 347:1–32

    Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase-a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 347:166

    Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trend Ecol Evol 18:147–155

    Article  Google Scholar 

  • Ibdah M, Krins A, Seidlitz HK et al (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ 25:1146–1154

    Article  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One. doi:10.1371/journal.pone.0071136

    Google Scholar 

  • Köster S, Pavkov-Keller T, Kühlbrandt W, Yildiz Ö (2011) Structure of human Na+/H+ exchanger NHE1 regulatory region in complex with calmodulin and Ca2+. J Biol Chem 286:40954–40961

    Article  PubMed Central  PubMed  Google Scholar 

  • Li JY, He XW, Hu L et al (2008) Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. J Zhejiang Univ Sci B 9:132–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Li Y, Li H, Wu G (2011) Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. Tree Physiol 31:349–357

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang Q, Yu M et al (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively overexpressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage root. Plant Cell Environ 31:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohnishi M, Fukada-Tanaka S, Hoshino A et al (2005) Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant Cell Physiol 46:259–267

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A et al (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  CAS  PubMed  Google Scholar 

  • Panahi B, Ahmadi FS, Mehrjerdi MZ, Moshtaghi N (2013) Molecular cloning and the expression of the Na+/H+ antiporter in the monocot halophyte Leptochloa fusca (L.) Kunth. NJAS Wagening J Life Sci 64–65:87–93

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS (2012) Plant and yeast NHX antiporters: roles in membrane trafficking. J Integr Plant Biol 54:66–72

    Article  CAS  PubMed  Google Scholar 

  • Radhouane L (2013) Agronomic and physiological responses of pearl millet ecotype (Pennisetum glaucum (L.) R. Br.) to saline irrigation. Emir J Food Agric 25:109–116

    Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W et al (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151

    Article  CAS  Google Scholar 

  • Rodríguez-Rosales MP, Jiang X, Gávez FJ et al (2008) Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179:366–377

    Article  PubMed  Google Scholar 

  • Rodríguez-Rosales MP, Galvez FJ, Huertas R et al (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    Article  PubMed Central  PubMed  Google Scholar 

  • Rus A, Baxter I, Muthukumar B et al (2006) Salt, Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet 2:e210. doi:10.1371/journal.pgen.0020210

    Article  PubMed Central  PubMed  Google Scholar 

  • Sauna ZE, Kimchi-Safarty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691

    Article  CAS  PubMed  Google Scholar 

  • Shabbala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  Google Scholar 

  • Slepkov E, Fliegel L (2002) Structure and function of the NHE1 isoform of the Na+/H+ exchanger. Biochem Cell Biol 80:449–508

    Article  Google Scholar 

  • Slepkov ER, Chow S, Lemieux MJ, Fliegel L (2004) Proline residues in transmembrane segment IV are critical for growth activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem J 379:31–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Kong X, Li C, Liu Y, Ding Z (2015) Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS One 10(5):e0124032. doi:10.1371/journal.pone.0124032

    Article  PubMed Central  PubMed  Google Scholar 

  • Tarn WY (1996) A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT–AC) intron in vitro. Cell 84:801–811

    Article  CAS  PubMed  Google Scholar 

  • Thomas JC, De Armond RL, Bohnert HJ (1992) Influence of NaCl on growth, proline, and phosphoenolpyruvate carboxylase levels in Mesembryanthemum crystallinum suspension cultures. Plant Physiol 98:626–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Venema K, Belver A, Marin-Manzano MC, Rodriguez-Rosales MP, Donaire JP (2003) A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J Biol Chem 278:22453–22459

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang L, Zheng Z et al (2013) Transcriptomic and physiological variation of three Arabidopsis ecotypes in response to salt stress. PLoS One 8:e69036. doi:10.1371/journal.pone.0069036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whiteman SA, Nühse TS, Ashford DA, Sander D, Maathius FJ (2008) A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 56:146–156

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Krainer AR (1999) AT–AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol 19:3225–3236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophile. Plant Mol Biol Rep 27:1–12

    Article  CAS  Google Scholar 

  • Xing W, Wang J, Liu H et al (2013) Influence of natural saline-alkali stress on chlorophyll content and chloroplast ultrastucture of two contrasting rice (Oriza sativa L. japonica) cultivars. Aust J Crop Sci 7:289–292

    Google Scholar 

  • Xue ZY, Zhi DY, Xue GP et al (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Yamaguchi T, Fukada-Tanaka S, Inagaki Y et al (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol 42:451–461

    Article  CAS  PubMed  Google Scholar 

  • Yarra R, He SJ, Abbagani S (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 111:49–57

    Article  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B et al (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Miki N, Momonoi K et al (2009) Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heaven Blue Proc Jpn Acad Ser B Phys Biol Sci 85:187–197

    Article  CAS  Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhi D, Xue Z et al (2007) Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. J Plant Physiol 164:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zörb C, Noll A, Karl S et al (2004) Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J Plant Physiol 162:55–66

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Julio Hernández González and Carlos Cabada Tavares for technical support and Diana Dorantes for editorial services. This work was supported by the National Council of Science and Technology (CONACYT) Grant 156563 and 118866.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gracia Gómez-Anduro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (PPTX 1082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villicaña, C., Warner, N., Arce-Montoya, M. et al. Antiporter NHX2 differentially induced in Mesembryanthemum crystallinum natural genetic variant under salt stress. Plant Cell Tiss Organ Cult 124, 361–375 (2016). https://doi.org/10.1007/s11240-015-0900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0900-6

Keywords

Navigation