Skip to main content
Log in

Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures of Morinda citrifolia and Rubia tinctorum

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant in vitro culture is a platform for producing secondary metabolites that combines safety, quality and low environmental impact. Besides, it is possible to increase the accumulation of these compounds by different strategies, such as elicitation. In this work, we analyzed the effects of the combination of methyl jasmonate (MeJ) and two cyclodextrins (CDs) on the production of anthraquinones (AQs) in cell cultures of Rubiaceae (Morinda citrifolia and Rubia tinctorum). These secondary metabolites have been traditionally used as dyes and have interesting therapeutic applications. The experiments were designed according to a full factorial design of two factors (MeJ and a CD) in two levels (0 and 0.1 mM for MeJ, and 0 and 20 mM of the CD). MeJ and (2-hydroxypropyl)-β-cyclodextrin (HPCD) synergistically increased intracellular AQ content in suspension cultures of R. tinctorum, and, to a lesser extent, in suspension cultures of M. citrifolia. Combination of MeJ with another CD, 2-methyl-β-cyclodextrin, led to a more intense and later increase in AQ content in cell cultures of R. tinctorum when compared to MeJ–HPCD treatment. However, the combination of CD and MeJ failed to induce a drastic AQ release to the culture media. Nevertheless, our results show that combination of strategies (using a CD and MeJ) was successful to increase secondary metabolite accumulation in suspension cultures. To our knowledge, this is the first report of synergistic effect of MeJ and CD on AQ accumulation in plant in vitro cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almagro L, Bru R, Pugin A, Pedreno MA (2012) Early signaling network in tobacco cells elicited with methyl jasmonate and cyclodextrins. Plant Physiol Biochem 51:1–9. doi:10.1016/j.plaphy.2011.09.021

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gutierrez J, Pedreño M, Sottomayor M (2014) Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tiss Organ Cult 119(3):543–551. doi:10.1007/s11240-014-0554-9

    Article  CAS  Google Scholar 

  • Belchi-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreno MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31(1):81–89. doi:10.1007/s00299-011-1141-8

    Article  CAS  PubMed  Google Scholar 

  • Belchi-Navarro S, Almagro L, Sabater-Jara AB, Fernandez-Perez F, Bru R, Pedreno MA (2013) Early signaling events in grapevine cells elicited with cyclodextrins and methyl jasmonate. Plant Physiol Biochem 62:107–110. doi:10.1016/j.plaphy.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  • Bóka K, Jakab J, Király I (2002) Comparison of the effect of different fungal elicitors on Rubia tinctorum L. suspension culture. Biol Plant 45(2):281–290. doi:10.1023/A:1015113226897

    Article  Google Scholar 

  • Briceño Z, Almagro L, Sabater-Jara AB, Calderon AA, Pedreno MA, Ferrer MA (2012) Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. J Plant Physiol 169(11):1050–1058. doi:10.1016/j.jplph.2012.03.008

    Article  PubMed  Google Scholar 

  • Bru R, Selles S, Casado-Vela J, Belchi-Navarro S, Pedreno MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54(1):65–71. doi:10.1021/jf051485j

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskaya MV, Glazunov VP, Radchenko SV, Zvereva EV, Fedoreyev SA, Zhuravlev YN (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97(3):213–221

    Article  CAS  PubMed  Google Scholar 

  • Busto VD, Calabró-López A, Rodríguez-Talou J, Giulietti AM, Merchuk JC (2013) Anthraquinones production in Rubia tinctorum cell suspension cultures: down scale of shear effects. Biochem Eng J 77:119–128. doi:10.1016/j.bej.2013.05.013

    Article  CAS  Google Scholar 

  • Butterworth BE, Mathre OB, Ballinger K (2001) The preparation of anthraquinone used in the National Toxicology Program cancer bioassay was contaminated with the mutagen 9-nitroanthracene. Mutagenesis 16(2):169–177

    Article  CAS  PubMed  Google Scholar 

  • Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH (2005) Jasmonic acid elicitation of anthraquinones with some associated enzymic and non-enzymic antioxidant responses in Morinda elliptica. Enzyme Microb Technol 36(4):469–477

    Article  CAS  Google Scholar 

  • Clark JH (2006) Green chemistry: today (and tomorrow). Green Chem 8(1):17–21. doi:10.1039/b516637n

    Article  CAS  Google Scholar 

  • Comini LR, Fernandez IM, Rumie Vittar NB, Nunez Montoya SC, Cabrera JL, Rivarola VA (2011) Photodynamic activity of anthraquinones isolated from Heterophyllaea pustulata Hook f. (Rubiaceae) on MCF-7c3 breast cancer cells. Phytomedicine 18(12):1093–1095. doi:10.1016/j.phymed.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  • Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem 9(5):411–420. doi:10.1039/b703488c

    Article  CAS  Google Scholar 

  • Corchete P, Bru R (2013) Proteome alterations monitored by DIGE analysis in Silybum marianum cell cultures elicited with methyl jasmonate and methyl β cyclodextrin. J Proteomics 85:99–108. doi:10.1016/j.jprot.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2010) InfoStat versión 2010, Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  • Doernenburg H, Knorr D (1994) Effectiveness of plant-derived and microbial polysaccharides as elicitors for anthraquinone synthesis in Morinda citrifolia cultures. J Agric Food Chem 42(4):1048–1052. doi:10.1021/jf00040a040

    Article  CAS  Google Scholar 

  • Durante M, Caretto S, Quarta A, De Paolis A, Nisi R, Mita G (2011) Beta-cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures. Appl Microbiol Biotechnol 90(6):1905–1913. doi:10.1007/s00253-011-3232-4

    Article  CAS  PubMed  Google Scholar 

  • Han YS, Van der Heijden R, Verpoorte R (2001) Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell Tiss Organ Cult 67(3):201–220. doi:10.1023/A:1012758922713

    Article  CAS  Google Scholar 

  • Hanchinal VM, Survase SA, Sawant SK, Annapure US (2008) Response surface methodology in media optimization for production of β-carotene from Daucus carota. Plant Cell Tiss Organ Cult 123–132(93):123–132. doi:10.1007/s11240-008-9350-8

    Article  Google Scholar 

  • Huang TK, Plesha MA, Falk BW, Dandekar AM, McDonald KA (2009) Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures. Biotechnol Bioeng 102(2):508–520. doi:10.1002/bit.22061

    Article  CAS  PubMed  Google Scholar 

  • Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5(2):243–256. doi:10.1021/mp7001494

    Article  CAS  PubMed  Google Scholar 

  • Komaraiah P, Reddy GV, Reddy PS, Raghavendra AS, Ramakrishna SV, Reddanna P (2003) Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum. Biotechnol Lett 25(8):593–597

    Article  CAS  PubMed  Google Scholar 

  • Komaraiah P, Kavi Kishor PB, Carlsson M, Magnusson K-E, Mandenius C-F (2005) Enhancement of anthraquinone accumulation in Morinda citrifolia suspension cultures. Plant Sci 168:1337–1344. doi:10.1016/j.plantsci.2005.01.017

    Article  CAS  Google Scholar 

  • Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A, Oleszek W (2012) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tiss Organ Cult 108(1):73–81. doi:10.1007/s11240-011-0014-8

    Article  CAS  Google Scholar 

  • Lijavetzky D, Almagro L, Belchi-Navarro S, Martinez-Zapater JM, Bru R, Pedreno MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132. doi:10.1186/1756-0500-1-132

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Nicolás JM, Escorial Camps M, Pérez-Sánchez H, García-Carmona F (2013) Physicochemical and thermodynamic characterization of the encapsulation of methyl jasmonate by natural and modified cyclodextrins using reversed-phase high-pressure liquid chromatography. J Agric Food Chem 61(47):11347–11354. doi:10.1021/jf402920p

    Article  PubMed  Google Scholar 

  • Martinez-Esteso MJ, Selles-Marchart S, Vera-Urbina JC, Pedreno MA, Bru-Martinez R (2009) Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J Proteomics 73(2):331–341. doi:10.1016/j.jprot.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Esteso MJ, Selles-Marchart S, Vera-Urbina JC, Pedreno MA, Bru-Martinez R (2011) DIGE analysis of proteome changes accompanying large resveratrol production by grapevine (Vitis vinifera cv. Gamay) cell cultures in response to methyl-beta-cyclodextrin and methyl jasmonate elicitors. J Proteomics 74(8):1421–1436. doi:10.1016/j.jprot.2011.02.035

    Article  CAS  PubMed  Google Scholar 

  • Naill MC, Kolewe ME, Roberts SC (2012) Paclitaxel uptake and transport in Taxus cell suspension cultures. Biochem Eng J 63:50–56. doi:10.1016/j.bej.2012.01.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orbán N, Boldizsár I, Szücs Z, Dános B (2008) Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes Pigm 77(1):249–257. doi:10.1016/j.dyepig.2007.03.015

    Article  Google Scholar 

  • Perassolo M, Quevedo C, Busto V, Ianone F, Giulietti AM, Rodríguez Talou J (2007) Enhance of anthraquinone production by effect of proline and aminoindan-2-phosphonic acid in Rubia tinctorum suspension cultures. Enzyme Microb Technol 41(1–2):181–185. doi:10.1016/j.enzmictec.2007.01.004

    Article  CAS  Google Scholar 

  • Perassolo M, Quevedo CV, Busto VD, Giulietti AM, Talou JR (2011a) Role of reactive oxygen species and proline cycle in anthraquinone accumulation in Rubia tinctorum cell suspension cultures subjected to methyl jasmonate elicitation. Plant Physiol Biochem 49(7):758–763. doi:10.1016/j.plaphy.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  • Perassolo M, Quevedo CV, Giulietti AM, Rodríguez Talou J (2011b) Stimulation of the proline cycle and anthraquinone accumulation in Rubia tinctorum cell suspension cultures in the presence of glutamate and two proline analogs. Plant Cell Tiss Organ Cult 106:153–159. doi:10.1007/s11240-010-9903-5

    Article  CAS  Google Scholar 

  • Quevedo CV, Perassolo M, Giulietti AM, Talou JR (2012) Enhancement of anthraquinone production in Morinda citrifolia cell suspension cultures after stimulation of the proline cycle with two proline analogs. Biotechnol Lett 34(3):571–575. doi:10.1007/s10529-011-0806-2

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153

    Article  CAS  PubMed  Google Scholar 

  • Rumie Vittar NB, Comini L, Fernadez IM, Agostini E, Nunez-Montoya S, Cabrera JL, Rivarola VA (2014) Photochemotherapy using natural anthraquinones: Rubiadin and Soranjidiol sensitize human cancer cell to die by apoptosis. Photodiagnosis Photodyn Ther 11(2):182–192. doi:10.1016/j.pdpdt.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  • Sabater-Jara A, Pedreño M (2013) Use of β-cyclodextrins to enhance phytosterol production in cell suspension cultures of carrot (Daucus carota L.). Plant Cell Tiss Organ Cult 114(2):249–258. doi:10.1007/s11240-013-0320-4

    Article  CAS  Google Scholar 

  • Sabater-Jara AB, Almagro L, Belchi-Navarro S, Ferrer MA, Barcelo AR, Pedreno MA (2010) Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. J Plant Physiol 167(15):1273–1281. doi:10.1016/j.jplph.2010.04.015

    Article  CAS  PubMed  Google Scholar 

  • Sabater-Jara AB, Onrubia M, Moyano E, Bonfill M, Palazon J, Pedreno MA, Cusido RM (2014) Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus × media cell cultures. Plant Biotechnol J 12(8):1075–1084. doi:10.1111/pbi.12214

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson G (1999) Drugs of natural origin—A textbook of pharmacognosy, 3rd edn. Swedish Pharmaceutical Society, Swedish Pharmaceutical Press, Stokkholm

    Google Scholar 

  • Schulte U, El-Shagi H, Zenk MH (1984) Optimization of 19 Rubiaceae species in cell culture for the production of anthraquinones. Plant Cell Rep 3(2):51–54. doi:10.1007/BF00270970

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20(5–6):341–359

    Article  CAS  PubMed  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228. doi:10.1007/10_2008_103

    CAS  PubMed  Google Scholar 

  • Smith BA, Reider ML, Fletcher JS (1982) Relationship between vital staining and subculture growth during the senescence of plant tissue cultures. Plant Physiol 70(4):1228–1230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Uden W, Woerdenbag H, Pras N (1994) Cyclodextrins as a useful tool for bioconversions in plant cell biotechnology. Plant Cell Tissue Organ Cult 38(2–3):103–113. doi:10.1007/BF00033867

    Article  CAS  Google Scholar 

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Vasconsuelo A, Giulietti AM, Picotto G, Rodríguez Talou J, Boland R (2003) Involvement of the PLC/PKC pathway in Chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Sci 165(2):429–436. doi:10.1016/S0168-9452(03)00208-5

    Article  CAS  Google Scholar 

  • Wang S, Zhong J, Kong D, Hu J, Li B, Gao W, Gai C, Zhuang C, Mao H (2011) Use of 9, 10-anthraquinone compounds, Shanghai Institute Of Pharmaceutical Industry, Institute Pasteur of Shanghai, Chinese Academy of Sciences, US 2011/0224414 A1

  • Zhang W, Hunter IS, Tham R (2011) Microbial and plant cell synthesis of secondary metabolites and strain improvement. In: El-Mansi EMT, Bryce CFA, Dahhou B, Sanchez S, Demain AL, Allman AR (eds) Fermentation microbiology and biotechnology, 3rd edn. CRC Press, Taylor & Francis Group, New York, pp 101–136

    Chapter  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333. doi:10.1016/j.biotechadv.2005.01.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant PIP 0366, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina, and by grant UBACyT B181, Universidad de Buenos Aires. MP; JRT and AMG are researchers from CONICET. MES is a fellow from CONICET.

Authors’ contribution

MP performed the experimental work and wrote the article. MES collaborated in the experimental work. AMG and JRT supervised the experimental work and the writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Rodríguez Talou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perassolo, M., Smith, M.E., Giulietti, A.M. et al. Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures of Morinda citrifolia and Rubia tinctorum . Plant Cell Tiss Organ Cult 124, 319–330 (2016). https://doi.org/10.1007/s11240-015-0896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0896-y

Keywords

Navigation