Skip to main content
Log in

Regeneration of fertile, hexaploid, interspecific hybrids of elephantgrass and pearl millet following treatment of embryogenic calli with antimitotic agents

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Elephantgrass (Pennisetum purpureum, 2n = 4x = 28) produces large amounts of biomass in tropical and subtropical regions and is considered a prime candidate for lignocellulosic biofuel production. Interspecific hybridization between elephantgrass and pearl millet (Pennisetum glaucum, 2n = 2x = 14) may allow improvement of drought tolerance and biomass quality. These interspecific hybrids are male and female sterile due to their triploid genome (2n = 3x = 21). Chromosome doubling of the triploid hybrids may restore fertility, permitting a backcross with the recurrent or other elephantgrass parents to enhance biomass yield and persistence. In this study, chromosome doubling of productive interspecific hybrids was performed in vitro. Immature inflorescence cross-sections of five interspecific hybrids with good agronomic performance were used as explants for establishment of embryogenic tissue cultures. These calli were treated with different antimitotic agents, oryzalin or trifluralin. Chromosome doubling was achieved in all five interspecific hybrids and a total of 74 plants with altered ploidy were confirmed by flow cytometry. Stomatal size determination was a suitable screening tool for identification of hexaploid events. Genotypes MN18 and MN51 had the highest number of plants with altered ploidy of 29 and 27, respectively. Oryzalin at 5 µM was the most effective antimitotic treatment and produced 55 of the 74 plants with altered ploidy. The most vigorous lines were grown to maturity and produced viable pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adaniya S, Shirai D (2001) In vitro induction of tetraploid ginger (Zingiber offcinale Roscoe) and its pollen fertility and germinability. Sci Hortic (Amsterdam) 88:277–287

    Article  Google Scholar 

  • Aina O, Quesenberry K, Gallo M (2012) In vitro induction of tetraploids in Arachis paraguariensis. Plant Cell, Tissue Organ Cult 111:231–238. doi:10.1007/s11240-012-0191-0

    Article  Google Scholar 

  • Bhaskaran S, Smith RH (1990) Regeneration in cereal tissue culture: a review. Crop Sci 30:1328–1336. doi:10.2135/cropsci1990.0011183X003000060034x

    Article  CAS  Google Scholar 

  • Burton G (1944) Hybrids between Napier grass and cattail millet. J Hered 25:227–232

    Google Scholar 

  • Campos JMS, Davide LC, Salgado CC et al (2009) In vitro induction of hexaploid plants from triploid hybrids of Pennisetum purpureum and Pennisetum glaucum. Plant Breed 128:101–104

    Article  CAS  Google Scholar 

  • Christou P (1993) Philosophy and practice of variety-independent gene transfer into recalcitrant crops. Vitr Cell Dev Biol 29P:119–124

    Article  Google Scholar 

  • Conger BV, Novak FJ, Afza R, Erdelsky K (1987) Somatic embryogenesis from cultured leaf segments of Zea mays. Plant Cell Rep 6:345–347

    Article  CAS  PubMed  Google Scholar 

  • Cruz CD (2006) Programa genes: multivariate analysis and simulation. Ed UFV, Viçosa 175

  • Dhooghe E, Laere K, Eeckhaut T et al (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue Organ Cult 104:359–373. doi:10.1007/s11240-010-9786-5

    Article  Google Scholar 

  • Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Geoffriau E, Kahaneb R, Bellamyb C, Rancillac M (1997) Ploidy stability and in vitro chromosome doubling in gynogenic clones of onion (Allium cepa L.). Plant Sci 122:201–208

    Article  CAS  Google Scholar 

  • Hanna WW, Monson WG (1980) Yield, quality and breeding behavior of pearl millet × napiergrass interspecific hybrids. Agron J 72:358–360

    Article  Google Scholar 

  • Hanna WW, Gaines TP, Gonzalez B, Monson WG (1984) Effect of ploidy on yield and quality of pearl millet × napiergrass hybrids1. Agron J 76:969. doi:10.2134/agronj1984.00021962007600060024x

    Article  Google Scholar 

  • Hansen NJP, Andersen SB (1996) In vitro chromosome doubling potential of colchicine, oryzalin, trifluralin, and APM in Brassica napus microspore culture. Euphytica 88:159–164. doi:10.1007/BF00032447

    Article  CAS  Google Scholar 

  • Hassawi DS, Liang GH (1991) Antimitotic agents: effects on double haploid production in wheat. Crop Sci 31:723–726. doi:10.2135/cropsci1991.0011183X003100030037x

    Article  CAS  Google Scholar 

  • Haydu C, Vasil IK (1981) Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum Schum. Theor Appl Genet 59:269–273

    Article  CAS  PubMed  Google Scholar 

  • Jan CC, Chandler J, Wagner SA (1988) Induced tetraploidy and trisomic production of Helianthus annuus L. Genome 30:647–651

    Article  Google Scholar 

  • Kannan B, Sollenberger L, Altpeter F (2010) Development of a non-invasive high-biomass crop by interspecific hybridization between elephantgrass (Pennisetum purpureum Schum.) and pearl millet (Pennisetum glaucum L.). 6th International symposium molecular breedings forage Turf 2010. Buenos Aires, Argentina, p 172

  • Kermani MJ, Sarasan V, Roberts AV et al (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200. doi:10.1007/s00122-003-1374-1

    Article  CAS  PubMed  Google Scholar 

  • Lambe P, Mutambel HSN, Deltour R, Dinant M (1999) Somatic embryogenesis in pearl millet (Pennisetum glaucum): strategies to reduce genotype limitation and to maintain long-term totipotency. Plant Cell, Tissue Organ Cult 55:23–29

    Article  Google Scholar 

  • Liu G, Li Z, Bao M (2007) Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157:145–154. doi:10.1007/s10681-007-9406-6

    Article  Google Scholar 

  • Lu C, Bridgen MP (1997) Chromosome doubling and fertility study of Alstroemeria aurea × A. caryophyllaea. Euphytica 94:75–81

    Article  Google Scholar 

  • Martha GB, Corsi M, Trivelin PCO et al (2004) Nitrogen recovery and loss in a fertilized elephant grass pasture. Grass Forage Sci 59:80–90

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell, Tissue Organ Cult 104:329–341. doi:10.1007/s11240-011-9918-6

    Article  Google Scholar 

  • Petersen KK, Hagberg P, Kristiansen K (2003) Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell, Tissue Organ Cult 73:137–146. doi:10.1023/A:1022854303371

    Article  Google Scholar 

  • Quesenberry KH, Dampier JM, Lee YY et al (2010) Doubling the chromosome number of bahiagrass via tissue culture. Euphytica 175:43–50. doi:10.1007/s10681-010-0165-4

    Article  Google Scholar 

  • Rajasekaran K, Schank SC, Vasil IK (1986) Characterization of biomass production, cytology and phenotypes of plants regenerated from embryogenic callus cultures of Pennisetum americanum × P. purpureum (hybrid triploid napiergrass). Theor Appl Genet 73:4–10. doi:10.1007/BF00273710

    Article  CAS  PubMed  Google Scholar 

  • Sandhu S, James VA, Quesenberry KH, Altpeter F (2009) Risk assessment of transgenic apomictic tetraploid bahiagrass, cytogenetics, breeding behavior and performance of intra-specific hybrids. Theor Appl Genet 119:1383–1395. doi:10.1007/s00122-009-1142-y

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Tom Hash C, Rizvi SMH et al (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:334–337. doi:10.1626/pps.8.334

    Article  Google Scholar 

  • Shenoy VB, Vasil IK (1992) Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K. Schum). Theor Appl Genet 83:947–955. doi:10.1007/BF00232955

    Article  CAS  PubMed  Google Scholar 

  • Sidu BS, Gupta VP (1973) Stability of performance for yield and nutrient content of napier-bajra (Pennisetum purpureum × P. typhoides) hybrids. Plant Sci 6:30–35

    Google Scholar 

  • Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99:8394–8399. doi:10.1016/j.biortech.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  • Techio VH, Davide LC, Vander Pereira A (2006) Meiosis in elephant grass (Pennisetum purpureum), pearl millet (Pennisetum glaucum) (Poaceae, Poales) and their interspecific hybrids. Genet Mol Biol 29:353–362

    Article  Google Scholar 

  • Vandenhout H, Ortiz R, Vuylsteke D et al (1995) Effect of ploidy on stomatal and other quantitative traits in plantain and banana hybrids. Euphytica 83:117–122. doi:10.1007/BF01678038

    Article  Google Scholar 

  • Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Plant Physiol 128:193–218

    Article  Google Scholar 

  • Vasil IK (1994) Automation of plant propagation. Plant Cell, Tissue Organ Cult 39:105–108. doi:10.1007/BF00033917

    Article  Google Scholar 

  • Vasil V, Vasil IK (1981) Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum, and P. americanum × P. purpureum hybrid. Am J Bot 68:864–872

    Article  Google Scholar 

  • Wang D-Y, Vasil IK (1982) Somatic embryogenesis and plant regeneration from inflorescence segments of Pennisetum purpureum schum. (Napier or elephant grass). Plant Sci Lett 25:147–154. doi:10.1016/0304-4211(82)90172-9

    Article  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423. doi:10.1105/tpc.5.10.1411

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We like to thank Jeffrey Wilson USDA-ARS, Tifton GA, for providing seeds of pearl millet genotype DMP3A4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2015_874_MOESM1_ESM.pptx

Flow cytometry histograms. ad Different tillers T1–T4 of same hexaploid plant (6x). e tetraploid (4x) elephantgrass control. P1 and P2: Peak 1 and Peak 2 (PPTX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faleiro, F.G., Kannan, B. & Altpeter, F. Regeneration of fertile, hexaploid, interspecific hybrids of elephantgrass and pearl millet following treatment of embryogenic calli with antimitotic agents. Plant Cell Tiss Organ Cult 124, 57–67 (2016). https://doi.org/10.1007/s11240-015-0874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0874-4

Keywords

Navigation