Skip to main content
Log in

Cryopreservation of somatic embryos of Alnus glutinosa (L.) Gaertn. and confirmation of ploidy stability by flow cytometry

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Germplasm preservation plays an important role in current breeding programs. A simple vitrification procedure that allows for the reproducible cryopreservation of two alder embryogenic lines is presented for the first time. Somatic embryos clumps (1–2 mm) were precultured in hormone-free medium (Murashige and Skoog half-strength macronutrients, MS1/2) supplemented with 0.3 M sucrose for 3 days, and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose for 20 min at 25 °C. Osmoprotected somatic embryos were dehydrated using plant vitrification solution 2 (PVS2). The effect of different PVS2 incubation times was evaluated, and 60 min at 0 °C was considered to be the optimum period. After changing the solution with fresh PVS2, the somatic embryos were directly immersed in liquid nitrogen. Following rapid thawing in a water bath at 40 °C for 2 min, the somatic embryos were transferred onto MS1/2 supplemented with 0.1 mg l−1 benzyladenine, 30 g l−1 sucrose and 6 g l−1 Vitro agar. The cultures were kept in the dark for 1 week prior to exposure to light (16 h/8 h light/dark cycle). The recovery rate of vitrified somatic embryos reached over 90 % in both embryogenic lines. Cryopreservation did not affect the plant regeneration potential of Alnus glutinosa through somatic embryogenesis. The ploidy stability of the regenerated material was assessed by flow cytometry. Analysis of DNA ploidy stability of the control, PVS2 treated, cryopreserved somatic embryos and plantlets showed no significant differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adu-Gyambi R, Wetten A (2012) Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos by vitrification. CryoLetters 33:494–505

    Google Scholar 

  • Ai P-F, Lu L-P, Song J-J (2012) Cryopreservation of in vitro-grown shoot-tips of Rhabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tissue Organ Cult 108:381–387

    Article  Google Scholar 

  • Brasier CM, Kirk SA, Delcan J, Cooke DL, Jung T, Man In’t Veld WA (2004) Phytophthora alni sp nova and its variants: designation of a group of emerging heteroploid hybrid pathogens. Mycol Res 108:1172–1184

    Article  CAS  PubMed  Google Scholar 

  • Chmielarz P (2010) Cryopreservation of orthodox seeds of Alnus glutinosa. CryoLetters 31:139–146

    PubMed  Google Scholar 

  • Corredoira E, San José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25:33–42

    PubMed  Google Scholar 

  • Corredoira E, San José MC, Vieitez AM, Ballester A (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell Tissue Organ Cult 91:281–288

    Article  CAS  Google Scholar 

  • Corredoira E, Valladares S, Martínez MT, Vieitez AM, San José MC (2013) Somatic embryogenesis in Alnus glutinosa (L.) Gaertn. Trees 27:1597–1608

    Article  Google Scholar 

  • Corredoira E, Toribio M, Vieitez AM (2014) Clonal propagation via somatic embryogenesis in Quercus spp. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, pp 264–302

    Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Aurell-Wistrom C (1984) Stabilization of dry phospholipid bilayers and proteins by sugars. Plant Cell Rep 12:89–94

    Google Scholar 

  • Crowe LM, Womersley C, Crowe JH, Reid D, Appel L, Rudolph A (1986) Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochim Biophys Acta 861:131–140

    Article  CAS  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128

    Article  Google Scholar 

  • Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345

    Article  Google Scholar 

  • Engelmann F (1992) Cryopreservation of embryos. In: Dattée Y, Dumas C, Gallais A (eds) Reproductive biology and plant breeding. Springer, Berlin, pp 281–290

    Chapter  Google Scholar 

  • Engelmann F (2000) Importance of the cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical germplasm. Current research progress and application. JIRCAS/IPGRI, Tsukuba, pp 8–20

    Google Scholar 

  • Fernandes P, Rodríguez E, Pinto G, Roldán-Ruíz I, De Loose M, Santos C (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation–dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell-cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW, Lambert G, Macas J, Dolezel J (2002) Analysis of nuclear DNA content and ploidy in higher plants. In: Robinson J, Darzynkiewicz Z, Dean P, Hibbs A, Orfao A, Rabinovitch P, Wheeless L (eds) Current protocols in cytometry. Wiley, New York, pp 7.6.1–7.6.22

    Google Scholar 

  • Gibbs JN, van Dijk C, Webber JF (2003) Phytophthora disease of alder in Europe. For Comm Bull 126. Forestry Commission, Edinburgh

  • Guzman-García E, Bradaï F, Sánchez-Romero C (2013) Cryopreservation of avocado embryogenic cultures using droplet-vitrification method. Acta Physiol Plant 35:183–193

    Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Hernández I, Cuenca B, Carneros E et al (2011) Application of plant regeneration of selected cork oak trees by somatic embryogenesis to implement multivarietal forestry for cork production. In: Nageswara-Rao M, Soneji JR (eds) Focus on tree micropropagation and tissue culture. Tree and forestry science and biotechnology 5 (special issue 1). Global Science Books, Isleworth, pp 19–26

    Google Scholar 

  • Jitsuyama Y, Suzuki T, Harada T, Fujikawa S (2002) Sucrose incubation increases freezing tolerance of asparagus (Asparagus officinalis L.) embryogenic cell suspensions. CryoLetters 23:103–112

    CAS  PubMed  Google Scholar 

  • Kaviani B (2011) Conservation of plant genetic resources by cryopreservation. Aust J Crop Sci 5:778–800

    Google Scholar 

  • Krajnákova J, Sutela S, Aronen T, Gömory D, Vianello A, Häggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25

    Article  PubMed  Google Scholar 

  • Krajnákova J, Bertolini A, Gömöry D, Vianello A, Häggman H (2013) Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines. In Vitro Cell Dev Biol-Plant 49:560–571

    Article  Google Scholar 

  • Lambardi M, De Carlo A (2003) Application of tissue culture to the germplasm conservation of temperature broad-leaf trees. In: Jain JM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordrecht, pp 815–840

    Chapter  Google Scholar 

  • Lambardi M, De Carlo A, Capuana M (2005) Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification. CryoLetters 26:185–192

    PubMed  Google Scholar 

  • Lelu-Walter M-A, Thompson D, Harvengt L, Sánchez L, Toribio M, Páques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899

    Article  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip cultures. Comb Proc Int Soc 30:421–427

    Google Scholar 

  • Loureiro J, Pinto G, Lopes T, Dolezel J, Santos C (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822

    Article  CAS  PubMed  Google Scholar 

  • Loureiro J, Capelo A, Brito G, Rodríguez E, Silva S, Pinto G, Santos C (2007a) Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry. Biol Plant 51:7–14

    Article  CAS  Google Scholar 

  • Loureiro J, Rodríguez E, Dolezel J, Santos C (2007b) Two new nuclear isolation buffers for plant DNA flow cytometry. A test with 37 species. Ann Bot 100:875–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189

    Article  PubMed  Google Scholar 

  • Marum L, Loureiro J, Rodriguez E, Santos C, Oliveira MM, Miguel C (2009) Flow cytometry and morphological analyses of Pinus pinaster somatic embryogenesis. J Biotechnol 25:288–295

    Article  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446

    Article  CAS  PubMed  Google Scholar 

  • Merkle S, Cunningham M (2011) Southern hardwood varietal forestry: a new approach to short-rotation woody crops for biomass energy. J For 109:7–14

    Google Scholar 

  • Mikula A, Olas M, Sliwinska E, Rybczynski JJ (2008) Cryopreservation by encapsulation of Gentiana spp cell suspensions maintains regrowth, embryogenic competence and DNA content. CryoLetters 29:409–418

    PubMed  Google Scholar 

  • Mikula A, Tomiczak K, Rybczynski JJ (2011) Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintain (epi) genetic uniformity of regenerants. Plant Cell Rep 30:565–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for the rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Enomoto S, Magosi J, Kato S (1992) Cryopreservation of in vitro-grown shoot tips of mulberry by vitrification. CryoLetters 13:303–312

    Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Park YS, Bonga JM (2011) Application of somatic embryogenesis in forest management and research. In: Park Y-S, Bonga JM, Park SY, Moon HK (eds) Advances in somatic embryogenesis of trees and its applications for the future forest and plantations. Proc IUFRO working party 2.09.02 conference, Suwon, Republic of Korea, pp 3–8

  • Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, Maccacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Organ Cult 86:87–101

    Article  Google Scholar 

  • Pence VC (2014) Tissue cryopreservation for plant conservation: potential and challenges. Int J Plant Sci 175:40–45

    Article  Google Scholar 

  • Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of the genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587

    Article  CAS  PubMed  Google Scholar 

  • Ramon M, Geuns JMC, Swennen R, Panis B (2002) Polyamines and fatty acids in sucrose precultured banana meristems and correlation with survival rate after cryopreservation. CryoLetters 23:345–352

    CAS  PubMed  Google Scholar 

  • Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New York

    Book  Google Scholar 

  • Ryynämen L, Aronen T (2005) Vitrification, a complementary cryopreservation method for Betula pendula Roth. Cryobiology 51:208–219

    Article  Google Scholar 

  • Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Int Plant Genet Resour Inst, Rome, pp 1–7

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tnaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • San José MC, Janeiro LV, Corredoira E (2013) Micropropagation of threatened black alder. Silva Fenn 47:1–12

    Article  Google Scholar 

  • San José MC, Valladares S, Janeiro LV, Corredoira E (2014) Cryopreservation of in vitro-grown shoot tips of Alnus glutinosa (L.) Gaertn. Acta Physiol Plant 36:109–116

    Article  Google Scholar 

  • Sánchez C, Martínez MT, Vidal N, San José MC, Valladares S, Vieitez AM (2008) Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. CryoLetters 29:493–504

    PubMed  Google Scholar 

  • Sánchez-Romero C, Sweenen R, Panis B (2009) Cryopreservation of olive embryogenic cultures. CryoLetters 30:359–372

    PubMed  Google Scholar 

  • Sant R, Panis B, Taylor M, Tyagi A (2008) Cryopreservation of shoot tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tissue Organ Cult 92:107–111

    Article  Google Scholar 

  • Schoenweiss K, Meieer-Dinkel A, Grotha R (2005) Comparison of cryopreservation techniques for long-term storage of ash (Fraxinus excelsior L.). CryoLetters 26:201–212

    PubMed  Google Scholar 

  • Sen-Rong H, Ming-Hua Y (2012) A simple and efficient protocol for cryopreservation of embryogenic calli of the medicinal plant Anemarrhena asphodeloides Bunge by vitrification. Plant Cell Tissue Organ Cult 109:287–296

    Article  Google Scholar 

  • Takagi H (2000) Recent development in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and applications. JIRCAS/IPGRI, Rome, pp 178–193

    Google Scholar 

  • Takagi H, Tien TN, Islam OM, Senboku T, Sakai A (1997) Cryopreservation of in vitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. I. Investigation of basic conditions of the vitrification procedure. Plant Cell Rep 16:594–599

    Article  CAS  Google Scholar 

  • Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    Article  CAS  Google Scholar 

  • Valladares S, Toribio M, Celestino C, Vieitez AM (2004) Cryopreservation of embryogenic cultures from mature Quercus robur trees using vitrification. CryoLetters 25:177–186

    PubMed  Google Scholar 

  • Vieitez AM, San José MC, Corredoira E (2011) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols, methods in molecular biology, vol 710. Springer Science + Business Media, New York, pp 201–213

    Chapter  Google Scholar 

  • Webber J, Gibbs J, Hendry S (2004) Phytophthora disease of alder. For Comm Inf Note 6. Forestry Commission, Edinburgh

  • Zhu GY, Geuns JMC, Dussert S, Swennen R, Panis B (2006) Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effect on cryopreservation. Physiol Plant 128:80–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Carlos Súarez and Mª José Cernadas for their technical assistance.

Author contribution statement

M.C. San José and E Corredoira designed the research, analyzed the data and wrote the paper. H. Oliveira and C. Santos performed the ploidy fidelity studies, analyzed and wrote their results. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conceiçao Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San José, M.d.C., Corredoira, E., Oliveira, H. et al. Cryopreservation of somatic embryos of Alnus glutinosa (L.) Gaertn. and confirmation of ploidy stability by flow cytometry. Plant Cell Tiss Organ Cult 123, 489–499 (2015). https://doi.org/10.1007/s11240-015-0853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0853-9

Keywords

Navigation