Skip to main content
Log in

Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Micro-propagation techniques contribute to the multiplication of several bromeliad species. However, micropropagated plantlets often present low survival rate due to anatomical and physiological disorders induced by in vitro conditions. This study aimed to evaluate the sucrose and gas exchange impact on in vitro propagated Billbergia zebrina plants and to check if there is any residual effect of the in vitro conditions on micropropagated plants after acclimatization. Previously in vitro-established B. zebrina plants were transferred to culture media containing 0.0, 15.0, 30.0, 45.0 or 60.0 g L−1 sucrose. Two different culture container sealing systems were tested: lids with a filter (permitting an excellent gas exchange) and a filter covered with PVC (blocking fluent gas exchange). At 45 days in vitro growth, B. zebrina plantlets were transplanted onto plastic pots containing peat and cultivated for 80 days in greenhouse. At 45 days in vitro and 80 days of acclimatization in the greenhouse, the plants were evaluated. High sucrose levels in the in vitro media resulted in reduced growth. Plantlets exposed to aerated containers presented better rooting, being the sugar-free medium the best in vitro condition (photoautotrophic condition). Limited air exchange resulted in plantlets with anatomical and physiological disorders at the end of the in vitro period. The highest growth rate in the greenhouse was observed in plants previously propagated in unlimited gas exchange system and sugar-free medium. The use of photoautotrophic conditions induces B. zebrina plantlets without anatomical and physiological disorders and it interfere positively on ex vitro growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aragón C, Carvalho L, González J, Escalona M, Amancio S (2012) The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions. Plant Cell Rep 31:757–769. doi:10.1007/s00299-011-1195-7

    Article  PubMed  Google Scholar 

  • Bao C, Wang J, Zhang R, Zhang B, Zhang H, Zhou Y, Huang S (2012) Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J 71:962–975. doi:10.1111/j.1365-313X.2012.05044.x

    Article  CAS  PubMed  Google Scholar 

  • Barboza SBSC, Graciano-Ribeiro D, Teixeira JB, Portes TA, Souza LAC (2006) Anatomia foliar de plantas micropropagadas de abacaxi. Pesqui Agropecu Bras 41:185–194. doi:10.1590/S0100-204X2006000200002

    Article  Google Scholar 

  • Bresta P, Nikolopoulos D, Economou G, Vahamidis P, Lyra D, Karamanos A, Karabourniotis G (2011) Modification of water entry (xylem vessels) and water exit (stomata) orchestrates long term drought acclimation of wheat leaves. Plant Soil 347:179–193. doi:10.1007/s11104-011-0837-4

    Article  CAS  Google Scholar 

  • Carvalho V, Santos DS, Nievola CC (2014) In vitro storage under slow growth and ex vitro acclimatization of the ornamental bromeliad Acanthostachys strobilacea. S Afr J Bot 92:39–43. doi:10.1016/j.sajb.2014.01.011

    Article  Google Scholar 

  • Cha-um S, Chanseetis C, Chintakovid W, Pichakum A, Supaibulwatana K (2011) Promoting root induction and growth of in vitro macadamia (Macadamia tetraphylla L. ‘Keaau’) plantlets using CO2-enriched photoautotrophic conditions. Plant Cell Tissue Organ Cult 106:435–444. doi:10.1007/s11240-011-9940-8

    Article  CAS  Google Scholar 

  • Cui XH, Murthy HN, Wu CH, Paek KY (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult 103:7–14. doi:10.1007/s11240-010-9747-z

    Article  CAS  Google Scholar 

  • De Proft MP, Maenen LJ, Debergh PC (1985) Carbon dioxide and ethylene evolution in the culture atmosphere of Magnolia cultured in vitro. Physiol Plant 65:373–379. doi:10.1111/j.1399-3054.1985.tb08660.x

    Article  Google Scholar 

  • Deccetti SFC, Soares AM, Paiva R, Castro EM (2008) Effect of the culture environment on stomatal features, epidermal cells and water loss of micropropagated Annona glabra L. plants. Sci Hortic 117:341–344. doi:10.1016/j.scienta.2008.05.020

    Article  Google Scholar 

  • Dias MC, Pinto G, Guerra C, Jesus C, Amaral J, Santos C (2013) Effect of irradiance during acclimatization on content of proline and phytohormones in micropropagated Ulmus minor. Biol Plant 57:769–772. doi:10.1007/s10535-013-0341-1

    Article  CAS  Google Scholar 

  • Dias GMG, Soares JDR, Pasqual M, Silva RAL, Rodrigues LCA, Pereira FJ, Castro EM (2014a) Photosynthesis and leaf anatomy of Anthurium cv. Rubi plantlets cultured in vitro under different silicon (Si) concentrations. Aust J Crop Sci 8:1160–1167

    CAS  Google Scholar 

  • Dias MC, Correia C, Moutinho-Pereira J, Oliveira H, Santos C (2014b) Study of the effects of foliar application of ABA during acclimatization. Plant Cell Tissue Organ Cult 117:213–224. doi:10.1007/s11240-014-0434-3

    Article  CAS  Google Scholar 

  • Eckstein A, Zieba P, Gabrys H (2012) Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J Plant Growth Regul 31:90–101. doi:10.1007/s00344-011-9222-z

    Article  CAS  Google Scholar 

  • Ferreira WM, Suzuki RM, Pescador R, Figueiredo-Ribeiro RCL, Kerbauy GB (2011) Propagation, growth, and carbohydrates of Dendrobium Second Love (Orchidaceae) in vitro as affected by sucrose, light, and dark. In Vitro Cell Dev Biol Plant 47:420–427. doi:10.1007/s11627-010-9311-x

    Article  Google Scholar 

  • Freschi L, Takahashi CA, Cambui CA, Semprebom TR, Cruz AB, Mioto PT, Versieux LM, Calvente A, Latansio-Aidar SR, Aidar MPM, Mercier H (2010) Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. J Plant Physiol 167:526–533. doi:10.1016/j.jplph.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  • Fuentes G, Talavera C, Desjardins Y, Santamaria JM (2005a) High irradiance can minimize the negative effect of exogenous sucrose on the photosynthetic capacity of in vitro grown coconut plantlets. Biol Plant 49:7–15. doi:10.1007/s10535-005-7015-6

    Article  CAS  Google Scholar 

  • Fuentes G, Talavera C, Opereza C, Desjardins Y, Santamaria J (2005b) Exogenus sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell Dev Biol Plant 41:69–76. doi:10.1079/IVP2004597

    Article  CAS  Google Scholar 

  • Guerra MP, Vesco LLD (2010) Strategies for the micropropagation of bromeliads. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants: methods in molecular biology, v.589. Humana Press, New York, pp 47–66. doi:10.1007/978-1-60327-114-1_6

    Chapter  Google Scholar 

  • Hameed M, Ashraf M, Naz N, Nawaz T, Batool R, Ahmad MSA, Ahmad F, Hussain M (2013) Anatomical adaptations of Cynodon dactylon (l.) Pers. from the salt range (Pakistan) to salinity stress. II. Leaf anatomy. Pak J Bot 45:133–142

    CAS  Google Scholar 

  • Hazarika BN (2003) Acclimatization of tissue-cultured plants. Curr Sci 85:1704–1712

    CAS  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120. doi:10.1016/j.scienta.2006.01.038

    Article  CAS  Google Scholar 

  • Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Organ Cult 110:227–238. doi:10.1007/s11240-012-0145-6

    Article  Google Scholar 

  • Ivanova M, Staden JV (2010) Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schönland ex Pillans. Plant Growth Regul 60:143–150. doi:10.1007/s10725-009-9430-8

    Article  CAS  Google Scholar 

  • Jo EA, Tewari RK, Hahn EJ, Paek KY (2009) In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell, Tissue Organ Cult 96:307–315. doi:10.1007/s11240-008-9488-4

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique, 2a edn. Mc Graw-Hill, New York, p 523

    Google Scholar 

  • Kitaya Y, Ohmura Y, Kubota C, Kozai T (2005) Manipulation of the culture environment on in vitro air movement and its impact on plantlets photosynthesis. Plant Cell Tissue Organ Cult 83:251–257. doi:10.1007/s11240-005-6839-2

    Article  CAS  Google Scholar 

  • Kozai T (2010) Photoautotrophic micropropagation—environmental control for promoting photosynthesis. Prop Ornam Plants 10:188–204

    Google Scholar 

  • Kozai T, Kubota C (2001) Developing a photoautotrophic micropropagation system for woody plants. J Plant Res 114:525–537. doi:10.1007/PL00014020

    Article  Google Scholar 

  • Kurita FMK, Tamaki V (2014) In vitro growth of the bromeliad Alcantarea imperialis (Carrière) Harms with different concentrations of nitrogen. Acta Sci Biol Sci 36:279–285. doi:10.4025/actascibiolsci.v36i3.22933

    Article  Google Scholar 

  • Mantovani A, Venda AKL, Almeida VR, Costa AF, Forzza RC (2012) Leaf anatomy of Quesnelia (Bromeliaceae): implications for the systematics of core bromelioids. Plant Syst Evol 298:787–800. doi:10.1007/s00606-012-0590-z

    Article  Google Scholar 

  • Martins JPR, Schimildt ER, Alexandre RS, Santos BR, Magevski GC (2013) Effect of synthetic auxins on in vitro and ex vitro bromeliad rooting. Pesqui Agropec Trop 43:138–146. doi:10.1590/S1983-40632013000200009

    Article  Google Scholar 

  • Martins JPR, Schimildt ER, Alexandre RS, Castro EM, Nani TF, Pires MF, Pasqual M (2014) Direct organogenesis and leaf-anatomy modifications in vitro of Neoregelia concentrica (Vellozo) L.B. Smith (Bromeliaceae). Pak J Bot 46:2179–2187

    Google Scholar 

  • Mengesha A, Ayenew B, Tadesse T (2013) Energy sources affect in vitro propagation and subsequent acclimatization of Ananas comosus, var. smooth cayenne plants. J Microbiol Biotechnol Food Sci 2:2372–2376

    CAS  Google Scholar 

  • Mohamed AA (2008) Promotive effects of a 5-aminolevulinic acid-based fertilizer on growth of tissue culture-derived date palm plants (Phoenix dactylifera L.) during acclimatization. Sci Hortic 118:48–52. doi:10.1016/j.scienta.2008.05.034

    Article  Google Scholar 

  • Mohamed MA, Alsadon HAA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Hortic 123:295–300. doi:10.1016/j.scienta.2009.09.014

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ola H, Reham AE, Farag E, Eisa SS, Habib SA (2012) Morpho-anatomical changes in salt stressed kallar grass (Leptochloa fusca L. Kunth). Res J Agric Biol Sci 8:158–166

    Google Scholar 

  • Park SY, Moon HK, Murthy HN, Kim YW (2011) Improved growth and acclimatization of somatic embryo-derived Oplopanax elatus plantlets by ventilated photoautotrophic culture. Biol Plant 55:559–562. doi:10.1007/s10535-011-0125-4

    Article  Google Scholar 

  • Pedroso ANV, Lazarini RAM, Tamaki V, Nievola C (2010) In vitro culture at low temperature and ex vitro acclimatization of Vriesea inflata an ornamental bromeliad. Braz J Bot 33:407–414. doi:10.1590/S0100-84042010000300004

    Article  Google Scholar 

  • Pereira TAR, Silva LC, Azevedo AA, Francino DMT, Coser TS, Pereira JD (2013) Leaf morpho-anatomical variations in Billbergia elegans and Neoregelia mucugensis (Bromeliaceae) exposed to low and high solar radiation. Botany 91:327–334. doi:10.1139/cjb-2012-0276

    Article  Google Scholar 

  • Pospíšilová J, Haisel D, Synková H, Čatský J, Wilhelmová N, Plzáková S, Procházková D, Šrámek F (2000) Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. Plant Cell Tissue Organ Cult 61:125–133. doi:10.1023/A:1006402719458

    Article  Google Scholar 

  • Rodríguez-Gamir J, Intrigliolo DS, Primo-Millo E, Forner-Giner MA (2010) Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiol Plant 139:159–169. doi:10.1111/j.1399-3054.2010.01351.x

    Article  PubMed  Google Scholar 

  • Sáez PL, Bravo LA, Sáez KL, Sánchez-Olate M, Latsague MI, Ríos DG (2012) Photosynthetic and leaf anatomical characteristics of Castanea sativa: a comparison between in vitro and nursery plants. Biol Plant 56:15–24. doi:10.1007/s10535-012-0010-9

    Article  Google Scholar 

  • Saldanha CW, Otoni CG, Rocha DI, Cavatte PC, Detmann KSC, Tanaka FKO, Dias LLC, DaMatta FM, Otoni WC (2014) CO2-enriched atmosphere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell Tissue Organ Cult 118:87–99. doi:10.1007/s11240-014-0464-x

    Article  CAS  Google Scholar 

  • Salih AA, Ali IA, Lux A, Luxova M, Cohen Y, Sugimoto Y, Inanaga S (1999) Rooting, water uptake and xylem structure adaptation to drought of two sorghum cultivars. Crop Sci 39:168–173. doi:10.2135/cropsci1999.0011183X003900010027x

    Article  Google Scholar 

  • Shao HB, Chud LY, Jaleelc CH, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225. doi:10.1016/j.crvi.2008.01.002

    Article  PubMed  Google Scholar 

  • Shin KS, Park SY, Paek KY (2013) Sugar metabolism, photosynthesis, and growth of in vitro plantlets of Doritaenopsis under controlled microenvironmental conditions. In Vitro Cell Dev Biol Plant 49:445–454. doi:10.1007/s11627-013-9524-x

    Article  CAS  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotech 21:197–203. doi:10.1016/j.copbio.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  • Trevisan F, Mendes BMJ (2005) Optimization of in vitro organogenesis in passion fruit (Passiflora edulis f. flavicarpa). Sci Agric 62:346–350. doi:10.1590/S0103-90162005000400007

    Article  Google Scholar 

  • Wang L, Ruan YL (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci 4:1–9. doi:10.3389/fpls.2013.00163

    Google Scholar 

  • Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult 105:149–158. doi:10.1007/s11240-010-9863-9

    Article  CAS  Google Scholar 

  • Zobayed SMA (2000) In vitro propagation of Lagerstroemia spp. from nodal explants and gaseous composition in the culture headspace. Environ Control Biol 38:1–11

    Article  Google Scholar 

  • Zobayed SMA (2005) Ventilation in micropropagation. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer, Netherlands, pp 147–186. doi: 10.1007/1-4020-3126-2_9

Download references

Acknowledgments

The authors would like to thank the CAPES (Brazil) for the financial support as a scholarship granted to João P. R. Martins during his sandwich Ph.D. They also thank to Katholieke Universiteit Leuven for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Rodrigues Martins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, J.P.R., Verdoodt, V., Pasqual, M. et al. Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Plant Cell Tiss Organ Cult 123, 121–132 (2015). https://doi.org/10.1007/s11240-015-0820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0820-5

Keywords

Navigation