Skip to main content
Log in

Transcriptional profiling analysis of genic male sterile–fertile Capsicum annuum reveal candidate genes for pollen development and maturation by RNA-Seq technology

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To identify genes involved in the pollen development and maturation, genome-wide transcriptional profiling of the flower buds from fertile and sterile plants of the genic male sterile–fertile line 114AB of Capsicum annuum was performed by the RNA-Seq approach. The results indicated that there were numerous changes in gene expression due to the gene mutation in sterile plants. A total of 668 differential expressed genes were identified. Among them, 562 were up-regulated and 106 were down-regulated genes in the fertile plants compared to those of the sterile plants, including 202 and 2 genes specifically accumulated in fertile and sterile plants, respectively. Hundreds of genes potentially involved in pollen development were identified from the genes specifically expressed in the fertile plants, including pollen coat protein, lipid binding protein, lipid transfer protein, pectin methylesterase, male sterility-related protein, anther-specific protein, pectate lyase gene and so forth. Subsequent analysis of expression patterns for a subset of these genes were verified by semi-quantitative RT-PCR and quantitative RT-PCR. Furthermore, the up-regulated genes were predicted to be associated with intracellular membrane-bounded organelle, cytoplasmic vesicle, oxidoreductase activity, metal ion binding, pollen wall assembly, pollen exine formation, starch and sucrose metabolism, and other processes through Gene ontology and KEGG enrichment analysis. Taken together, this study provides a list of candidate genes and their expression patterns for pollen development and maturation in pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Luque F, Leyva-Perez MO, Leterrier M, Corpas FJ, Barroso JB (2014) Differential transcriptomic analysis by RNA-seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol 55:1080–1095

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C, Chen G, Hao X, Cao B, Chen Q, Liu S, Lei J (2011a) CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci 181:439–448

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D (2011b) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C, Hao X, Chen G, Cao B, Chen Q, Liu S, Lei J (2012) Characterization of a new male sterility-related gene Camf1 in Capsicum annuum L. Mol Biol Rep 39:737–744

    Article  CAS  PubMed  Google Scholar 

  • Cloonan N, Forrest ARR, Kolle G, Gardiner BBA, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–6190

    Article  CAS  PubMed  Google Scholar 

  • de Groot P, Weterings K, de Been M, Wittink F, Hulzink R, Custers J, van Herpen M, Wullems G (2004) Silencing of the pollen-specific gene NTP303 and its family members in tobacco affects in vivo pollen tube growth and results in male sterile plants. Plant Mol Biol 55:715–726

    Article  PubMed  Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Futamura N, Mori H, Kouchi H, Shinohara K (2000) Male flower-specific expression of genes for polygalacturonase, pectin methylesterase and beta-1,3-glucanase in a dioecious willow (Salix gilgiana Seemen). Plant Cell Physiol 41:16–26

    Article  CAS  PubMed  Google Scholar 

  • Glover J, Grelon M, Craig S, Chaudhury A, Dennis E (1998) Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15:345–356

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hafidh S, Breznenova K, Ruzicka P, Fecikova J, Capkova V, Honys D (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12:24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao XF, Lei JJ, Chen GJ, Cao BH (2008) Pollen mother cell meiosis and male gametophyte development of hot pepper. Acta Agriculturae Boreali-Sinica 3:190–193 in Chinese

    Google Scholar 

  • Heslop-Harrison Y (2000) Control gates and micro-ecology: the pollen-stigma interaction in perspective. Ann Bot 85:5–13

    Article  Google Scholar 

  • Hong ST, Chung JE, An G, Kim SR (1998) Analysis of 176 expressed sequence tags generated from cDNA clones of hot pepper by single-pass sequencing. J Plant Biol 41:116–124

    Article  Google Scholar 

  • Hou L, Xiao YH, Li XB, Wang WF, Luo XY, Pei Y (2002) The cDNA-AFLP differential display in developing anthers between cotton male sterile and fertile line of“Dong A”. Acta Genet Sin 29:359–363

    CAS  PubMed  Google Scholar 

  • Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y (2008) Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp. chinensis reveal genes related to pollen development. Plant Biol (Stuttg) 10:342–355

    Article  CAS  Google Scholar 

  • Jiang M, Cao J (2008) Isolation and characterization of a male sterility gene homolog BcMS2 from Chinese cabbage-pak-choi that expressing in an anther-specific manner. Mol Biol Rep 35:299–305

    Article  CAS  PubMed  Google Scholar 

  • Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595

    Article  CAS  PubMed  Google Scholar 

  • Kamalay JC, Goldberg RB (1980) Regulation of structural gene expression in tobacco. Cell 19:935–946

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M (2002) The KEGG database. Silico Simul Biol Process 247:91–103

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484

    Article  Google Scholar 

  • Lee J, Yoon JB, Park HG (2008) A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (Capsicum annuum L.). Mol Breed 21:95–104

    Article  CAS  Google Scholar 

  • Lee J, Yoon JB, Han JH, Lee WP, Do JW, Ryu H, Kim SH, Park HG (2010a) A codominant SCAR marker linked to the genic male sterility gene (ms(1)) in chili pepper (Capsicum annuum). Plant Breed 129:35–38

    Article  CAS  Google Scholar 

  • Lee J, Yoon JB, Han JH, Lee WP, Kim SH, Park HG (2010b) Three AFLP markers tightly linked to the genic male sterility ms3 gene in chili pepper (Capsicum annuum L.) and conversion to a CAPS marker. Euphytica 173:55–61

    Article  CAS  Google Scholar 

  • Liu S, Chen C, Chen G, Cao B, Chen Q, Lei J (2012) RNA-sequencing tag profiling of the placenta and pericarp of pungent pepper provides robust candidates contributing to capsaicinoid biosynthesis. Plant Cell Tissue Organ Cult 110:111–121

    Article  CAS  Google Scholar 

  • Liu C, Ma N, Wang PY, Fu N, Shen HL (2013a) Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in chili pepper (Capsicum annuum L.). PLoS One 8(6):e65209. doi:10.1371/journal.pone.0065209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Li W, Wu Y, Chen C, Lei J (2013b) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS One 8(1):e48156. doi:10.1371/journal.pone.0048156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mandaokar A, Kumar VD, Amway M, Browse J (2003) Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol Biol 52:775–786

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas JP (1990) Gene activity during pollen development. Annu Rev Plant Physiol Plant Mol Biol 41:317–338

    Article  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pino J, Gonzalez M, Ceballos L, Centurion-Yah AR, Trujillo-Aguirre J, Latournerie-Moreno L, Sauri-Duch E (2007) Characterization of total capsaicinoids, colour and volatile compounds of Habanero chilli pepper (Capsicum Chinense Jack.) cultivars grown in Yucatan. Food Chem 104:1682–1686

    Article  CAS  Google Scholar 

  • Pring DR, Tang HV (2004) Transcript profiling of male-fertile and male-sterile sorghum indicates extensive alterations in gene expression during microgametogenesis. Sex Plant Reprod 16:289–297

    Article  Google Scholar 

  • Riggs CD, Zeman K, Deguzman R, Rzepczyk A, Taylor AA (2001) Antisense inhibition of a tomato meiotic proteinase suggests functional redundancy of proteinases during microsporogenesis. Genome 44:644–650

    Article  CAS  PubMed  Google Scholar 

  • Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR (2007) GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics 8:217

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong M, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Willing RP, Mascarenhas JP (1984) Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiol 75:865–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willing RP, Bashe D, Mascarenhas JP (1988) An analysis of the quantity and diversity of messenger RNAs from pollen and shoot s of Zea mays. Theor Appl Genet 75:751–753

    Article  CAS  Google Scholar 

  • Xie YZ, Hong DF, Xu ZH, Liu PW, Yang GS (2008) Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breed 127:145–149

    Article  CAS  Google Scholar 

  • Yoo YG, Lee SC, Kim SR (2003) Identification of a flower-specific cDNA, RsPCP1, encoding putative pollen coat protein from radish. J Plant Biol 46:130–133

    Article  CAS  Google Scholar 

  • Zhang J, Turley RB, Stewart JM (2008) Comparative analysis of gene expression between CMS-D8 restored plants and normal non-restoring fertile plants in cotton by differential display. Plant Cell Rep 27:553–561

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the key project of Guangdong Science and Technology Section (2010A020102001,2013B051000069 and Agricultural Section), The key project of Guangzhou Science and Technology Section (2011Y2-0001511BppZXbb3140003), Research Fund for the Doctoral Program of Higher Education (20134404110017), and the Principal Foundation of South China Agricultural University (K13012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoju Chen or Jianjun Lei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 79 kb)

Supplementary material 2 (XLS 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Chen, G., Cao, B. et al. Transcriptional profiling analysis of genic male sterile–fertile Capsicum annuum reveal candidate genes for pollen development and maturation by RNA-Seq technology. Plant Cell Tiss Organ Cult 122, 465–476 (2015). https://doi.org/10.1007/s11240-015-0784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0784-5

Keywords

Navigation