Skip to main content
Log in

Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Salinity is an important abiotic stress that severely depresses plant growth and development. Plants have evolved salinity tolerance mechanisms to enable adaptation to hostile environments. Generally, metabolic networks must be reconfigured to maintain metabolic homeostasis and to mitigate the stress. However, the mechanisms of plant stress-response systems are incompletely understood, which represents a bottleneck for further use of salinity-tolerant plants. Through its capability to provide both an overview and detailed analysis of changes in metabolic pathways, metabolomics has been widely applied to research plants’ stress resistance. In this study a metabolomics approach was adopted to describe changes in the metabolic profile of Nitraria tangutorum Bobr. suspension cells under salinity stress. Four salinity treatments (100, 150, 200, and 250 mM NaCl) were applied and liquid medium lacking NaCl was used as the control. After culture for 4 days, salinity stress affected the biomass, cell morphology, and osmotic potential of the suspension cells. Totals of 373 and 629 peaks were detected by gas chromatography/time-of-flight mass spectrometry in the aqueous phase and organic phase, respectively. Metabolic profiling differences were visualized by partial least squares-discriminant analysis models to highlight the changes in metabolic pathways under salinity stress. Twenty-six metabolites that showed differences in content were identified, including sugars, amino acids, and fatty acids. This research provides novel insights into the complex of metabolic pathways involved in the synthesis of stress-related metabolites, and of the salinity-tolerance mechanism in N. tangutorum suspension cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CE:

Capillary electrophoresis

DW:

Dried weight

FTIR:

Fourier transform infrared

FW:

Fresh weight

GC:

Gas chromatography

LC:

Liquid chromatography

MS:

Murashige and Skoog

NMR:

Nuclear magnetic resonance

PLS–DA:

Partial least squares-discriminant analysis

RGR:

Relative growth rate

SIMCA:

Soft independent modeling of class analogy

TCA:

Tricarboxylic acid cycle

VIP:

Variable importance in the projection

References

  • Abdul Jaleel C, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  CAS  Google Scholar 

  • Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol 150:772–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atanassov A, Brown DC (1984) Plant regeneration from suspension culture and mesophyll protoplasts of Medicago sativa L. Plant Cell Tissue Organ Cult 3:149–162

    Article  Google Scholar 

  • Beck JG, Mathieu D, Loudet C, Buchoux S, Dufourc EJ (2007) Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB J 21:1714–1723

    Article  CAS  PubMed  Google Scholar 

  • Blechert S et al (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations—making metabolism move. Curr Opin Plant Biol 1:267–274

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella M (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115

    Article  CAS  Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    Article  CAS  PubMed  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21

    Article  CAS  Google Scholar 

  • Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE (2009) Metabolomic analysis in food science: a review. Trends Food Sci Technol 20:557–566

    Article  CAS  Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Cheng T, Wang P, Liu W, Xiao J, Yang Y, Hu X, Jiang Z, Zhang S, Shi J (2012) Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa. J Proteomics 75:5226–5243

    Article  CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes*. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Foolad M (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Article  CAS  Google Scholar 

  • Gao M, Li Y, Chong P, Su S (2011) Physiological responses of Nitraria tangutorum from different geographic provenances under osmotic stress. Acta Prataculturae Sinica 20:99–107

    Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  • Hare P, Cress W (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hare P, Cress W, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hegeman AD (2010) Plant metabolomics—meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 9:139–148

    Article  CAS  PubMed  Google Scholar 

  • Johnson HE, Broadhurst D, Goodacre R, Smith AR (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62:919–928

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, Kachroo P (2007) Salicylic acid-, jasmonic acid- and ethylenemediated regulation of plant defense signaling. Genet Eng 28:55–83

    CAS  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawasaki S et al (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell Online 13:889–905

    Article  CAS  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415–424

    Article  CAS  PubMed  Google Scholar 

  • Knobloch K-H, Beutnagel G, Berlin J (1981) Influence of accumulated phosphate on culture growth and formation of cinnamoyl putrescines in medium-induced cell suspension cultures of Nicotiana tabacum. Planta 153:582–585

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Fernie A, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, CIFTCI-YILMAZ S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Moco S, Schneider B, Vervoort J (2009) Plant micrometabolomics: the analysis of endogenous metabolites present in a plant cell or tissue. J Proteome Res 8:1694–1703

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi R, Saito K (2013) Metabolomics for unknown plant metabolites. Anal Bioanal Chem 405:5005–5011

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol 24:10–16

    Article  CAS  PubMed  Google Scholar 

  • Ning Z, Lu C, Zhang Y, Zhao S, Liu B, Xu X, Liu Y (2013) Application of plant metabonomics in quality assessment for large-scale production of traditional chinese medicine. Planta Med 79:897–908

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  PubMed Central  PubMed  Google Scholar 

  • Rhodes D, Verslues PE, Sharp RE (1999) Role of amino acids in abiotic stress resistance. In: Singh B (ed) Plant amino acids. Biochemistry and biotechnology. Marcel Dekker, New York, pp 319–356

    Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roldan MG, Engel B, de Vos RCH, Vereijken P, Astola L, Groenenboom M, de Geest HV, Bovy A, Molenaar J, Eeuwijk FV, Hall RD (2014) Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics 10:958–974

    Article  Google Scholar 

  • Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Article  CAS  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Semel Y et al (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Sung SJS, Xu DP, Galloway CM, Black CC (1988) A reassessment of glycolysis and gluconeogenesis in higher plants. Physiol Plant 72:650–654

    Article  CAS  Google Scholar 

  • Surjus A, Durand M (1996) Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot 47:17–23

    Article  CAS  Google Scholar 

  • Szymańska E, Saccenti E, Smilde AK, Westerhuis JA (2012) Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8:3–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22:259–271

    Article  CAS  Google Scholar 

  • Ueda A et al (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55:2213–2218

    Article  CAS  PubMed  Google Scholar 

  • Urano K et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (1999) Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207:426–435

    Article  CAS  PubMed  Google Scholar 

  • Wu D et al (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8:e55431. doi:10.1371/journal.pone.0055431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang S-M, Furukawa I (2006) Anatomical adaptations of three species of Chinese xerophytes (Zygophyllaceae). J For Res 17:247–251

    Article  Google Scholar 

  • Yang Y, Shi R, Wei X, Fan Q, An L (2010) Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. Plant Cell Tissue Organ Cult 102:387–395

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Y, Lu J, Zhang H, Liu Y, Jiang Y, Shi R (2012) Exogenous H2O2 increased catalase and peroxidase activities and proline content in Nitraria tangutorum callus. Biol Plant 56:330–336

    Article  CAS  Google Scholar 

  • Yang Y, Yang F, Li X, Shi R, Lu J (2013) Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Bobr. grown under salinity stress. Plant Cell Tissue Organ Cult 112:33–42

    Article  CAS  Google Scholar 

  • Zhao L, Cui S, Zhang L, Zhang C (2004) The survival mechanism of dune reed (Phragmites communis) cultures under high sodium chloride concentration. Plant Cell Tissue Organ Cult 79:291–298

    Article  CAS  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Special Funds Projects for Basic Scientific Research Business Expenses of Central Public Welfare Research Institutes in Chinese Academy of Forestry (Grant No. CAFYBB2012009; No. CAFYBB2011005-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Yang, X., Zhu, J. et al. Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells. Plant Cell Tiss Organ Cult 122, 239–248 (2015). https://doi.org/10.1007/s11240-015-0744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0744-0

Keywords

Navigation