Skip to main content
Log in

Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant–Agrobacterium tumefaciens interaction

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Soybean is a difficult crop to manipulate through Agrobacterium tumefaciens-mediated genetic transformation. Plant–bacterium interaction plays an important role in the transformation process. Being rich with isoflavones, soybean may have an adverse effect on the A. tumefaciens-mediated genetic transformation. To investigate whether high content of endogenous isoflavones in soybean is a serious obstacle in achieving high efficient Agrobacterium-mediated transformation in soybean, a series of experiments on inhibition of isoflavone biosynthesis were conducted to improve upon soybean transformation efficiency. Results indicated that soybean isoflavones inhibited A. tumefaciens growth and respiration, the transformation efficiency [β-glucuronidase (GUS) transient expression] was negatively correlated with the phenylalanine ammonia-lyase activity and isoflavones content. The biosynthesis of soybean isoflavones was partially inhibited by sonication treatment and applying antagonists in co-culture medium and thereby decreased the adverse effects of isoflavones on Agrobacterium infection. A discernible improvement in transformation efficiency was achieved when sonication at 40 kHz for 3 min was applied along with Agro-infection and the explants were cultured on co-culture medium containing 20 μM α-aminooxyacetic acid (AOA), with the percentage of GUS transient expression as 41.4 %, being 3.6 times higher than that not sonicated and co-cultured on medium without AOA. Sonication was found not only to simply make micro-wounds for Agrobacterium to penetrate or releasing phenolic compounds for induced Agrobacterium vir gene expression; it disturbed the biosynthesis of isoflavones at the transcription level and decreased the adverse effects of isoflavones on soybean transformation, and thereby improving soybean transformation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PAL:

Phenylalanine ammonia-lyase

AOA:

α-Aminooxyacetic acid

AS:

Acetosyringone

SAAT:

Sonication-assisted Agrobacterium-mediated transformation

References

  • Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. Prog Bot 74:37–100

    Article  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    Article  CAS  PubMed  Google Scholar 

  • Benzle KA, Finer KR, Marty DM, McHale LK, Goodner BW, Taylor CG, Finer JJ (2014) Isolation and characterization of novel Agrobacterium strains for soybean and sunflower transformation. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-014-0679-x

    Google Scholar 

  • Dang W, Wei ZM (2007) An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173:381–389

    Article  CAS  Google Scholar 

  • Dutta I, Kottackal M, Tumimbang E, Tajima H, Zaid A, Blumwald E (2013) Sonication-assisted efficient Agrobacterium-mediated genetic transformation of the multipurpose woody desert scrub Leptadenia pyrotechnica. Plant Cell Tissue Organ Cult 112:289–301

    Article  CAS  Google Scholar 

  • Finer KR, Finer JJ (2000) Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonicated-assisted Agrobacterium-mediated transformation treated soybean cotyledons. Lett Appl Microbiol 30:406–410

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Godwin I, Todd G, Ford-Loyd B, Newbury HI (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603–7607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915–922

    Article  CAS  Google Scholar 

  • Hong HP, Zhang H, Olhoft P, Hill S, Wiley H, Toren E, Hillebrand H, Jones T, Cheng M (2007) Organogenic callus as the target for plant regeneration and transformation via Agrobacterium in soybean (Glycine max (L.) Merr.). In Vitro Cell Dev Biology-Plant 43:558–568

  • Hood EE, Gelvin SB, Melcher LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Institute of Shanghai Plant Physiology, Chinese Academy of Sciences, Shanghai Plant Physiology Society (China), (ed) (1999) Guide for modern plant physiology experiments. Science press, Beijing

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jiang L, Maoka T, Komori S, Fukamachi H, Kato H, Ogawa K (2004) An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.). J Exp Biol 3:189–198

    Google Scholar 

  • King JL, Finer JJ, McHale LK (2014) Development and optimization of agroinfiltration for soybean. Plant Cell Rep. doi:10.1007/s00299-01-1694-4

    Google Scholar 

  • Ko TS, Korban SS (2004) Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L.) Merrill]. In Vitro Cell Dev Biology-Plant 40:552–558

  • Ko TS, Lee S, Krasnyanski S, Kothan SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivar: Agrobaeterium strain and orientation of immature cotyledonary explants. Theor Appl Genet 107:439–447

    Article  CAS  PubMed  Google Scholar 

  • Larkin KM (2001) Optimization of soybean transformation using SAAT and GFP. Wooster: OARDC/OSU p. 126. (Thesis—Master)

  • Li HQ, Yang H, Zhang JJ, Wan XC, Fang CB (2009) The effect of specific inhibitors of phenylalanine ammonia-lyase and 4-coumarate-CoA ligase on isoflavone biosynthesis in Kudzu cell suspension culture. Chin J Trop Crops 30(1):47–52

    Google Scholar 

  • Liu ZH, Zhang HM, Li GL, Guo XL, Chen SY, Liu GB, Zhang YM (2011) Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica 178:363–372

    Article  CAS  Google Scholar 

  • Liu SC, Zhang GC, Yang LF, Mii M, Gai JY, Zhu YL (2014) Bialaphos-resistant transgenic soybeans produced by the Agrobacterium-mediated cotyledonary-node method. J Agr Sci Technol 16:175–190

    CAS  Google Scholar 

  • Mariashibu TS, Subramanyam K, Arun M, Mayavan S, Rajesh M, Theboral J, Manickavasagam M, Ganapathi A (2012) Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiol Plan. doi:10.1007/s11738-012-1046-3

    Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Biotechnology 6:923–926

    Article  Google Scholar 

  • Mello-Farias PC, Chaves ALS (2008) Advances in Agrobacterium-mediated plant transformation with emphases on soybean. Sci Agric 65:95–106

    Article  Google Scholar 

  • Meurer CA, Dinkin RD, Collins GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18:180–186

    Article  CAS  Google Scholar 

  • Muhammad Z, Bushra M, Salman AM, Muhammad FC (2010) Expression of genes in transgenic soybean (L.) leads to changes in plant phenotype, leaf morphology, and flowering time. Plant Cell Tissue Organ Cult 103:227–236

    Article  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J, Nielsen NC (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel E, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    CAS  PubMed  Google Scholar 

  • Olhoft PM, Flagel LE, Somers DA (2004) T-DNA locus structure in a large population of soybean plant transformed using the Agrobacterium-mediated cotyledonary-node method. Plant Biotechnol J 2(4):289–300

    Article  CAS  PubMed  Google Scholar 

  • Olhoft PM, Bernal LM, Grist LB, Hill DS, Mankin SL, Shen Y, Kalogerakis M, Wiley H, Toren E, Song HS, Hillebrand H, Jones T (2007) A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cell Dev Biology-Plant 43:536–549

  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617

    CAS  PubMed  Google Scholar 

  • Paz MM, Shou H, Guo Z, Zhang Z, Banerjee A, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213

    Article  CAS  PubMed  Google Scholar 

  • Pedersen HC, Christiansen J, Wyndaele R (1983) Induction and in vitro culture of soybean crown gall tumors. Plant Cell Rep 2:201–204

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A (2013) Agrobacterium infection and plant defense—transformation success hangs by a thread. Front Plant Sci. doi:10.3389/fpls.2013.00519

    PubMed Central  PubMed  Google Scholar 

  • Samoylov VW, Tucker DM, Thibaud-Nissen F, Parrott WAA (1998) liquid-medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep 18:49–54

    Article  CAS  Google Scholar 

  • Santarém ER, Trick HN, Essig JS, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  Google Scholar 

  • Song KT, WC Yim, Jung GH, Kim SL, Kwon YU, Lee BM (2013a) Relationship of transformation efficiency and metabolites induced in Korean soybean cotyledons treated with sonication. Korean J Crop Sci Hanguk Jakmul Hakhoe Chi 58(2):119–127

    Article  Google Scholar 

  • Song ZY, Tian JL, Fu WZ, Li L, Lu LH, Zhou L, Shan ZH, Tang GX, Shou HX (2013b) Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. J Zhejiang Univ Sci B 14(4):289–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanian S, Hu X, Lu G, Odell JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2014) Sonication and ultrasound: impact on plant growth and development. Plant Cell Tissue Organ Cult 117:131–143

    Article  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Wang JW, Xue YL (1981) Studies on plant phenylalanine ammonia-lyase I. The effect of phytohormone on the increase in phenylalanine ammonia-lyase (PAL) and cinnamic acid 4-hydroxylase (CA4H) activity and the sequence of concomitant changes of enzyme activity in sweet potato root tuber discs. Acta Phytophysiol Sin 7(4):373–380

    Google Scholar 

  • Wiebke SB, Droste A, Pasquali G, Osorio MB, Bucker NL, Passaglia LMP, Bencke M, Homrich MS, Margis PM, Bodanese ZM (2011) Transgenic fertile soybean plants derived from somatic embryos transformed via the combined DNA-free particle bombardment and Agrobacterium system. Euphytica 177:343–354

    Article  Google Scholar 

  • Wingender R, Rohrig H, Horicke C, Wing D, Schell J (1989) Differential regulation of soybean chalcone synthase genes in plant defense, symbiosis, and upon environmental stimuli. Mol Gen Genet 218:315–322

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Watanabe S, Arai M, Harada K, Kitamura K (2010) Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean. Plant Biotechnol 27:217–220

    Article  CAS  Google Scholar 

  • Yamada T, Takagi K, Ishimoto M (2012) Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breed Sci 61:480–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan B, Srinivas RM, Collins GB, Dinkins RB (2000) Agrobacterium tumefaciens -mediated transformation of soybean [Glycine max (L.) Merrill] using immature zygotic cotyledon explants. Plant Cell Rep 19:1090–1097

    Article  CAS  Google Scholar 

  • Yukawa K, Kaku H, Tanaka H, Koga-Ban Y, Fukuda M (2007) Enhanced soybean infection by the legume “supervirulent” Agrobacterium tumefaciens strain KAT23. Biosci Biotechnol Biochem 71:1676–1682

    Article  CAS  PubMed  Google Scholar 

  • Yukawa K, Kaku H, Tanaka H, Koga-Ban Y, Fukuda M (2008) Enhanced soybean infection by the legume “Super-Virulent” Agrobacterium tumefaciens strain KAT23. Biosci Biotechnol Biochem 72:1809–1816

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza C, Munoz-Bertomeu J, Arrillaga I (2004) Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep 11:832–838

    Article  Google Scholar 

  • Zeng P, Vadnais DA, Zhang Z, Polacco JC (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep 22:478–482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Major Project for Transgenic Crops of Chinese Agriculture Ministry (Grant No. 2014ZX0800402B); Natural Science Foundation of Hebei Province, China (Grant No. C2013301033); Key project for fundamental research of Hebei Province, China (Grant No. 14962903D).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YM., Zhang, HM., Liu, ZH. et al. Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant–Agrobacterium tumefaciens interaction. Plant Cell Tiss Organ Cult 121, 183–193 (2015). https://doi.org/10.1007/s11240-014-0693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0693-z

Keywords

Navigation