Skip to main content
Log in

GhWRKY44, a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

WRKY transcription factors play essential roles in mediating various stress responses in plants. Although numbers of researches have investigated the functional mechanisms of WRKY TFs, relative to the research progress in model plants, rather limited numbers of WRKY TFs have been functionally characterized in cotton. In this study, we isolated and characterized GhWRKY44, a group I WRKY gene from cotton (Gossypium hirsutum). Subcellular localization indicated that GhWRKY44 was localized to the nucleus. Additionally, a group of cis-acting elements associated with the response to environmental stresses were predicted in the promoter. The expression of GhWRKY44 can be induced by pathogen injection, abiotic stresses and diverse signaling molecules. Furthermore, the overexpression of GhWRKY44 in N. benthamiana exhibited enhanced resistance to bacterial pathogen R. solanacearum and fungal pathogen R. solani compared with wild-type plants. Importantly, several defense-related genes were induced in the transgenic plants, including PR-1, PR-2, PR-5 and NPR1 for SA signaling, and PR-4 for JA signaling. The transgenic plants also exhibited lower levels of ROS (H2O2 and O2 ) accumulation than wild-type plants following pathogen infection. Taken together, these results suggest that GhWRKY44 positively regulates pathogen induced plant disease resistance, and these findings will expand our knowledge on the functions of WRKY TFs in multiple signal transduction pathways of disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CTAB:

Cetyltrimethyl ammonium bromide

DAB:

3,3′-Diaminobenzidine

DAPI:

4′,6-Diamidino-2-phenylindole

ET:

Ethylene

GFP:

Green fluorescent protein

Gh:

Gossypium hirsutum

hiTAIL-PCR:

High-efficiency TAIL-PCR

MeJA:

Methyl jasmonate

MES:

2-(N-Morpholino)ethanesulfonic acid

MS medium:

Murashige and Skoog medium

Nb:

Nicotiana benthamiana

NBT:

Nitro blue tetrazolium

NPR1:

Non-expression of PR1

OE:

Overexpression

ORF:

Open reading frame

PR:

Pathogenesis-related

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription-PCR

R. solanacearum :

Ralstonia solanacearum

R. solani :

Rhizoctonia solani

qRT-PCR:

Quantitative real-time PCR PCR

SA:

Salicylic acid

References

  • Agrawal GK, Jwa NS, Rakwal R (2000) A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun 274:157–165

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159:266–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant, Cell Environ 31:86–96

    Article  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY TFs in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  PubMed  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68(1–2):81–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell Environ 36:757–774

    Article  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profile of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Dou LL, Zhang XH, Pang CY, Song MZ, Wei HL, Fan SL, Yu SX (2014) Genome wide analysis of the WRKY gene family in cotton. Mol Genet Genomics 289(6):1103–1121

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Guo RY, Yu FF, Gao Z, An HL, Cao XC, Guo XQ (2011) GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep 38:49–58

    Article  CAS  PubMed  Google Scholar 

  • Hernández JA, Rubio M, Olmos E, Ros-Barceló A, Martínez-Gómez P (2004) Oxidative stress induced by long-term PlumPox virus infection in peach (Prunus persica). Physiol Plant 122:486–495

    Article  Google Scholar 

  • Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279:303–312

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, HoVmann NL, Eichholtz D, Eichholtz D, Rogers SA, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Jing S, Zhou X, Song Y, Yu D (2009) Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58:181–190

    Article  CAS  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone dea-cetylase 19 in basal defense. Plant Cell 20:2357–2371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20:120–128

    Article  CAS  PubMed  Google Scholar 

  • Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31:389–404

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chen Z (2011) Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23:3824–3841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  PubMed  Google Scholar 

  • Li YZ, Zhang L, Lu WJ, Wang XL, Wu CA, Guo XQ (2014) Overexpression of cotton GhMKK4 enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic Nicotiana benthamiana. Mol Plant Pathol 15(1):94–108

    Article  PubMed  Google Scholar 

  • Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechnique 43:649–656

    Article  CAS  Google Scholar 

  • Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15:593–603

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔC(T) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu WJ, Chu XQ, Li YZ, Wang C, Guo XQ (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS ONE 8:e68503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng XZ, Zhang SQ (2013) MAPK Cascades in Plant Disease Resistance Signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Oh SK, Baek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D (2008) Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol 177:977–989

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Curr Med Chem 11:1163–1182

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15(20):5690–5700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhang L, An HL, Wu CA, Guo XQ (2011) GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 12:22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi WN, Liu DD, Hao LL, Wu CA, Guo XQ, Li H (2014) GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. Plant Cell, Tissue Organ Cult 118:17–32

    Article  CAS  Google Scholar 

  • Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role inbenzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, Jiang CJ, Kaku H, Inoue H, Takatsuji H (2012) Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol 13:83–94

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    Article  CAS  PubMed  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersen-sitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dang F, Liu Z, Wang X, Eulgem T, Lai Y, Yu L, She J, Shi Y, Lin J, Chen C, Guan D, Qiu A, He S (2013) CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Mol Plant Pathol 14(2):131–144. doi:10.1111/j.1364-3703.2012.00836.x

    Article  PubMed  Google Scholar 

  • Wang XL, Yan Y, Li YZ, Chu XA, Wu CQ, Guo XQ (2014) GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS One 18(9):e93577

    Article  Google Scholar 

  • Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  CAS  PubMed  Google Scholar 

  • Yan HR, Jia HH, Chen XB, Hao LL, An HL, Guo XQ (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol. doi:10.1093/pcp/pcu133

    Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu FF, Huaxia YF, Lu WJ, Wu C, Guo XQ (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol 12:144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Li YZ, Lu WJ, Meng F, Wu CA, Guo X (2012) Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot 63:3935–3951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 10(7):2

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 31171837) and Open Funding Project of State Key Laboratory of Crop Biology, China (No. 2013KF09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingqi Guo or Zheng Gao.

Additional information

Jing Li and Ji Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Wang, N. et al. GhWRKY44, a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana . Plant Cell Tiss Organ Cult 121, 127–140 (2015). https://doi.org/10.1007/s11240-014-0688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0688-9

Keywords

Navigation