Skip to main content
Log in

The addition of an organosilicone surfactant to Agrobacterium suspensions enables efficient transient transformation of in vitro grapevine leaf tissue at ambient pressure

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Transient Agrobacterium-mediated transformation of plant tissue has become a standard technique for rapid in vivo analysis of gene expression and function. In grapevine, the efficacy of transient leaf transformation is limited by the ability of bacterial suspensions to penetrate into the tissue. Current protocols therefore use the temporary application of a vacuum or site-specific syringe infiltration to improve transformation efficiencies. We show that supplementing Agrobacterium suspensions with a commercially available organosilicone surfactant (Pulse® penetrant) elevates transformation efficiency at ambient pressure. The transformation efficiency of leaf tissue of in vitro grown Vitis vinifera ‘Sauvignon blanc’ plantlets submerged in Agrobacterium suspension was increased 65-fold by the addition of Pulse® penetrant at low concentration (0.03 % v/v). A quick and precise determination of transformation efficiency was achieved by measuring red pigmentation of cells transiently transformed with the transcriptional activator of anthocyanin biosynthesis, VvMYBA1. A variable increase in transformation efficiency was also observed in eight commercial wine grape varieties and one rootstock variety. Pulse® penetrant can therefore be used to achieve transient transformation of grapevine by simply dipping in vitro leaf material into bacterial suspension culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371

    Article  CAS  PubMed  Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Goldsbrough AP, Tong Y, Yoder JI (1996) Lc as a non-destructive visual reporter and transposition excision marker gone for tomato. Plant J 9:927–933

    Article  CAS  Google Scholar 

  • Janssen B-J, Gardner RC (1990) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14:61–72

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MJ, Baek K, Park C-M (2009) Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep 28:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Kirienko DR, Luo A, Sylvester AW (2012) Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study. Plant Physiol 159:1309–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein TM, Wolf E, Wu R, Sanford J (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nat 327:70–73

    Article  CAS  Google Scholar 

  • Knoche M, Tamura H, Bukovac MJ (1991) Performance and stability of the organosilicon surfactant L-77: effect of pH, concentration, and temperature. J Agric Food Chem 39:202–206

    Article  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2005) Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin-colour mutants. J Jpn Soc Hortic Sci 74:196–203

    Article  CAS  Google Scholar 

  • Koshita Y et al (2008) An anthocyanin regulator from grapes, VlmybA1-2, produces reddish-purple plants. J Jpn Soc Hortic Sci 77:33–37

    Article  CAS  Google Scholar 

  • Li J-F, Park E, von Arnim AG, Nebenführ A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Z, Dhekney S, Gray D (2011) Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco. Transgenic Res 20:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Chan RL (2009) Transient transformation of sunflower leaf discs via an Agrobacterium-mediated method: applications for gene expression and silencing studies. Nat Protoc 4:1699–1707

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas JP, Hamilton DA (1992) Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV 35S-GUS construct. Plant J 2:405–408

    Article  CAS  Google Scholar 

  • Mullins MG, Tang FA, Facciotti D (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris SCHEELE and buds of Vitis vinifera L. Nat Biotechnol 8:1041–1045

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Picard K, Lee R, Hellens R, Macknight R (2013) Transient gene expression in Medicago truncatula leaves via Agroinfiltration. In: Legume genomics. Springer, pp 215–226

  • Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3 edn. Cold Spring Harbor Laboratory Press

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Shang Y et al (2007) Methods for transient assay of gene function in floral tissues. Plant Methods 3:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Eriksson ME (2012) A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides). Plant methods 8:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  • Ueki S, Lacroix B, Krichevsky A, Lazarowitz SG, Citovsky V (2008) Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat Protoc 4:71–77

    Article  Google Scholar 

  • Vidal JR, Gomez C, Cutanda MC, Shrestha BR, Bouquet A, Thomas MR, Torregrosa L (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16:138–151

    Article  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  • Yasmin A, Debener T (2010) Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tissue Organ Cult 102:245–250

    Article  CAS  Google Scholar 

  • Zabkiewicz J (2008) A cleaner and greener New Zealand thanks to 2, 4, 5-T, science, and silicones. Chem NZ 72:8

    CAS  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber C (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Joshua Philips for technical support. This work was supported by funding from Lincoln University, New Zealand and the New Zealand Winegrowers’ Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Winefield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizamore, D., Winefield, C. The addition of an organosilicone surfactant to Agrobacterium suspensions enables efficient transient transformation of in vitro grapevine leaf tissue at ambient pressure. Plant Cell Tiss Organ Cult 120, 607–615 (2015). https://doi.org/10.1007/s11240-014-0627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0627-9

Keywords

Navigation