Skip to main content
Log in

Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f.niedzwetzkyana)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

We have induced callus tissues from one R6/R6 homozygous genotype red-fleshed apple individual which was the hybrid offspring of Malus sieversii f.niedzwetzkyana and ‘Fuji’, and investigated the effect of auxin alone and auxin combined with cytokinin or nitrogen deficiency on anthocyanin synthesis. In callus culture, auxin alone significantly inhibited anthocyanin biosynthesis with the increase of auxin concentration. The inhibitory effect of 2,4-dichlorophenoxyacetic acid (2,4-D) on anthocyanin accumulation was about tenfold stronger than naphthalene acetic acid. Anthocyanin regulatory genes (MdMYB10 and MdbHLH3) and structural genes were dramatically suppressed by 0.6 mg/L 2,4-D. The inhibitory effect of auxin on anthocyanin biosynthesis was influenced by cytokinins 6-benzylaminopurine (BAP) and thidiazuron (TDZ) as well as nitrogen deficiency. Auxin and cytokinin displayed the interaction in controlling anthocyanin biosynthesis. Co-treatment of auxin and cytokinin (BAP or TDZ) significantly enhanced the cytokinin-induced increase in anthocyanin levels but too high auxin concentration strongly inhibited anthocyanin synthesis even in the presence of cytokinin. Nitrogen deficiency could reverse the inhibition of anthocyanin accumulation by auxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

NAA:

Naphthalene acetic acid

BAP:

6-Benzylaminopurine

TDZ:

Thidiazuron

MS:

Murashige and Skoog

References

  • Alfermann AW, Petersen M (1995) Natural product formation by plant cell biotechnology. Plant Cell Tissue Organ Cult 43:199–205

    Article  CAS  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • An XH, Tian Y, Chen KQ, Wang XF, Hao YJ (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717

    Article  CAS  PubMed  Google Scholar 

  • Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type-B response regulators of Arabidopsis play key roles in cytokinin signalling and plant development. Plant Cell 20:2102–2116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  CAS  PubMed  Google Scholar 

  • Bongue-Bartelsman M, Phillips DA (1995) Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol Biochem 33:539–546

    CAS  Google Scholar 

  • Brueggemann J, Weisshaar B, Sagasser M (2010) A WD40-repeat gene from Malus × domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Rep 29:285–294

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chen XS, Feng T, Zhang YM, He TM, Feng JR, Zhang CY (2007) Genetic diversity of volatile components in Xinjiang wild apple (Malus sieversii). J Genet Genomics 34:171–179

    Article  CAS  PubMed  Google Scholar 

  • Constabel F, Shyluk JP, Gamborg OL (1971) The effect of hormones on anthocyanin accumulation in cell cultures of Haplopappus gracilis. Planta 96:306–316

    Article  CAS  PubMed  Google Scholar 

  • Das PK, Shin DH, Choi SB, Yoo SD, Choi G, Park YI (2012) Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 34:93–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deikman J, Hammer PE (1995) Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol 108:47–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz C, Saliba-Colombani V, Loudet O, Belluomo P, Moreau L, Daniel-Vedele F, Morot-Gaudry JF, Masclaux-Daubresse C (2006) Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant Cell Physiol 47:74–83

    Article  CAS  PubMed  Google Scholar 

  • Do CB, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep 9:500–504

    CAS  Google Scholar 

  • Dougall DK, Johnson JM, Whitten GH (1980) A clonal analysis of anthocyanin accumulation by cell cultures of wild carrot. Planta 149:292–297

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt MV, Lee CY, Liu RH (2000) Nutrition: antioxidant activity of fresh apples. Nature 405:903–904

    CAS  PubMed  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Espley RV, Brendolise C, Chagné D et al (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Guo JC, Hu XW, Duan RJ (2005) Interactive effects of cytokinins, light and sucrose on the phenotypes and the syntheses of anthocyanins, lignins in cytokinin over-producing transgenic Arabidopsis. J Plant Growth Regul 24:93–101

    Article  CAS  Google Scholar 

  • Hirasun TJ, Shuler ML, Lackney VK, Spanswickc RM (1991) Enhanced anthocyanin production in grape cell cultures. Plant Sci 78:107–120

    Article  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962

    Article  CAS  Google Scholar 

  • Ibrahim RK, Thakur ML, Permanand B (1971) Formation of anthocyanins in callus tissue cultures. Lloydia 34:175–182

    CAS  Google Scholar 

  • Juliane W, Henryk F, Monika H, Andreas P, Mohammed AMSEA, Magda-Viola H (2014) Phenotypic and genetic analysis of the German Malus germplasm collection in terms of type 1 and type 2 red-fleshed apples. Gene 544:198–207

    Article  Google Scholar 

  • Kakegawa K, Suda J, Sugiyama M, Komamine A (1995) Regulation of anthocyanin biosynthesis in cell suspension cultures of Vitis in relation to cell division. Physiol Plant 94:661–666

    Article  CAS  Google Scholar 

  • Kim SH, Lee JR, Hong ST, Yoo YK, An G, Kim SR (2003) Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci 165:403–413

    Article  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids; a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Krisa S, Waffo Teguo P, Decendit A, Deffieux G, Vercauteren J, Merillon J-M (1999) Production of 13C-labelled anthocyanins by Vitis vinifera cell suspension cultures. Phytochemistry 51:651

    Article  CAS  PubMed  Google Scholar 

  • Lea US, Slimestad R, Smedvig P, Lillo C (2007) Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ (2012) MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160:1011–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TK (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Nakamura Y, Tachibanaki S, Kawamura S, Hirayama M (2003) Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J Agric Food Chem 51:3560–3563

    Article  CAS  PubMed  Google Scholar 

  • Meyer HJ, Staden J (1995) The in vitro production of an anthocyanin from callus cultures of Oxalis linearis. Plant Cell Tissue Organ Cult 40:55–58

    Article  CAS  Google Scholar 

  • Mori T, Sakurai M (1994) Production of anthocyanin from strawberry cell suspension cultures; effects of sugar and nitrogen. J Food Sci 59:588–593

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  • Ozeki Y, Komamine A (1981) Induction of anthocyanin synthesis in relation to embryogenesis in a carrot suspension culture: correlation of metabolic differentiation with morphological differentiation. Physiol Plant 53:570–577

    Article  CAS  Google Scholar 

  • Ozeki Y, Komamine A (1985) Effects of inoculum density, zeatin and sucrose on anthocyanin accumulation in a carrot suspension culture. Plant Cell Tissue Organ Cult 5:45–53

    Article  CAS  Google Scholar 

  • Ozeki Y, Komamine A (1986) Effects of growth regulators on the induction of anthocyanin synthesis in carrot suspension cultures. Plant Cell Physiol 27:1361–1368

    CAS  Google Scholar 

  • Peng MS, Hannam C, Gu HL, Bi YM, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50:320–337

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Serraino I, Dugo P, Di Paola R, Mondello L, Genovese T, Morabito D, Dugo G, Sautebin L, Caputi AP, Cuzzocrea S (2003) Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res 37(8):891–900

  • Rupasinghe HPV, Huber GM, Embree C, Forsline PL (2010) Red-fleshed apple as a source for functional beverages. Can J Plant Sci 90(1):95–100

    Article  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

  • Sevimli-Gur C, Burcu C, Akay S, Gulce-Iz S, Yesil-Celiktas O (2013) Extracts from black carrot tissue culture as potent anticancer agents. Plant Foods Hum Nutr 68:293–298

    Article  PubMed  Google Scholar 

  • Shin WH, Park SJ, Kim EJ (2006) Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci 79:130–137

    Article  CAS  PubMed  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    CAS  PubMed  Google Scholar 

  • Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A (2001) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 24:1189–1197

    Article  CAS  Google Scholar 

  • Takos AM, Jaffe´ FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

  • Toufektsian MC et al (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138:747–752

    CAS  PubMed  Google Scholar 

  • Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130

    CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Chen XS, Peng Y, Wang HB, Shi J, Zhang H (2008a) Genetic diversity of mineral elements, sugar and acid components in Malus sieversii (Ldb.) Roem. Acta Hortic Sin 35:277–280 (in Chinese)

    Article  CAS  Google Scholar 

  • Zhang XY, Chen XS, Peng Y, Liu ZC, Shi J, Wang HB (2008b) Genetic diversity of phenolic compounds in Malus sieversii. Acta Hortic Sin 35:1351–1356 (in Chinese)

    CAS  Google Scholar 

  • Zhang CY, Chen XS, Lin Q, Yuan ZH, Zhang H, Zhang XY, Liu CQ, Wu CJ (2009) SRAP markers for population genetic structure and genetic diversity in Malus sieversii from Xinjiang, China. Acta Hortic Sin 36:7–14 (in Chinese)

    Article  Google Scholar 

  • Zhou LL, Zeng HN, Shi MZ, Xie DY (2008) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229:37–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Special Fund for Agro-scientific Research in the Public Interest (201303093) and Natl. Natural Science Foundation of China (Grant Nos. 31171932 and 31201593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Sen Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 7385 kb)

Supplementary material 2 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, XH., Wang, YT., Zhang, R. et al. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f.niedzwetzkyana). Plant Cell Tiss Organ Cult 120, 325–337 (2015). https://doi.org/10.1007/s11240-014-0609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0609-y

Keywords

Navigation