Skip to main content
Log in

Efficient resynthesis of oilseed rape (Brassica napus L.) from crosses of winter types B. rapa × B. oleracea via simple ovule culture and early hybrid verification

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Resynthesis of Brassica napus is an important tool for the broadening of genetic diversity as well as crop cultivar improvement in oilseed rape. To the best of our knowledge, this is the first study focusing on the crossability, regeneration, and early verification of hybrids between diploid winter turnip rapes (Brassica rapa ssp. oleifera f. biennis), as the female component, and diploid winter curly kales (Brassica oleracea convar. acephalla var. sabellica). Pollination efficiency, mean embryo regeneration per bud and siliqua, as well as their relationships were evaluated in ovule cultures of twenty-four different one-sided crosses between six accessions of B. rapa and four accessions of B. oleracea. Successful germination of the embryos was achieved in 23 combinations. The mean number of embryos per bud reached 0.34. The most productive cross, Svalöfs Duro × Kapral, yielded 2.7 embryos per bud in the best replication. A significant and positive correlation (r = 0.26*) was detected between the pollination efficiency (i.e., setting of siliquae) and the number of embryos per siliqua. In the majority of crosses, procedures implemented exhibited better results than in similar published experiments on spring Brassica genotypes, and provides a simplified and less laborious method. The hybrid nature of all regenerants was verified via flow cytometry. The use of bulked samples for analysis was reliable due to highly significant differences in relative DNA content between all hybrid combinations and their respective parental components. Chromosome counting and morphological assessment further corroborated the results of the flow cytometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA:

N6-Benzyladenine

IAA:

Indole-3-acetic acid

FCM:

Flow cytometry

HPR:

Hybrid production rate

HSR:

Hybrid siliqua ratio

RS:

Resynthesized

References

  • Abid G, Muhoviski Y, Jacquemin JM, Mingeot D, Sassi K, Toussaint A, Baudoin JP (2011) Changes in DNA-methylation during zygotic embryogenesis in interspecific hybrids of beans (Phaseolus ssp.). Plant Cell Tiss Organ Cult 105:383–393

    Article  CAS  Google Scholar 

  • Benavente E, Cifuentes M, Dusautoir JC, David J (2008) The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet Genome Res 120:384–395

    Article  CAS  PubMed  Google Scholar 

  • Bennett RA, Thiagarajah MR, King JR, Rahman MH (2008) Interspecific cross of Brassica oleracea var. alboglabra and B. napus: effects of growth condition and silique age on the efficiency of hybrid production, and inheritance of erucic acid in the self-pollinated backcross generation. Euphytica 164:593–601

    Article  CAS  Google Scholar 

  • Bhat S, Sarla N (2004) Identification and overcoming barriers between Brassica rapa L. em. Metzg. and B. nigra (L) Koch crosses for the resynthesis of B. juncea (L) Czern. Genet Resour Crop Ev 51:455–469

    Article  CAS  Google Scholar 

  • Brown AP, Brown J, Dyer AF (1991) Optimal pollination conditions for seed set after a self-pollination, an intraspecific cross and an interspecific cross of marrow-stem kale (Brassica oleracea var. acepala). Euphytica 51:207–214

    Article  Google Scholar 

  • Carloni E, Ribotta A, López-Colomba E, Griffa S, Quiroga M, Tommasino E, Grunberg K (2014) Somatic embryogenesis from in vitro anther culture of apomictic buffel grass genotypes and analysis of regenerated plants using flow cytometry. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-014-0441-4

    Google Scholar 

  • Clarke HJ, Kumari M, Khan TN, Siddique KHM (2011) Poorly formed chloroplasts are barriers to successful interspecific hybridization in chickpea following in vitro embryo rescue. Plant Cell Tiss Organ Cult 106:465–473

    Article  CAS  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocols 2:2233–2244

    Article  CAS  Google Scholar 

  • Eeckhaut T, Leus L, Van Huylenbroeck J (2005) Exploitation of flow cytometry for plant breeding. Acta Physiol Plant 27:743–750

    Article  Google Scholar 

  • Evigez (2013) Plant genetic resources documentation in the Czech Republic. http://genbank.vurv.cz/genetic/resources/. Accessed 30 August 2013

  • Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Organ Cult 104:375–386

    Article  Google Scholar 

  • FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE, Wilton AD, Cochrane M (2007) Hybridisation within Brassica and allied genera: valuation of potential for transgene escape. Euphytica 158:209–230

    Article  Google Scholar 

  • Girke A, Schierholt A, Becker HC (2012) Extending the rapeseed genepool with resynthesized Brassica napus L. I: Genetic diversity. Genet Resour Crop Ev 59:1441–1447

    Article  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York. ISBN 0-471-87092-7

    Google Scholar 

  • Gu HH, Zhao ZQ, Sheng XG, Yu HF, Wang JS (2014) Efficient doubled haploid production in microspore culture of loose-curd cauliflower (Brassica oleracea var. botrytis). Euphytica 195:467–475

    Article  Google Scholar 

  • Happstadius I, Ljungberg A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breeding 122:30–34

    Article  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Horticult 108:105–120

    Article  CAS  Google Scholar 

  • Heath DW, Earle ED (1995) Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters. Theor Appl Genet 91:1129–1136

    CAS  PubMed  Google Scholar 

  • Heath DW, Earle ED (1997) Synthesis of low linolenic acid rapeseed (Brassica napus) through protoplast fusion. Euphytica 93:339–343

    Article  CAS  Google Scholar 

  • Inomata N (1990) Interspecific hybridization in Brassica through ovary culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 10, legumes and oilseed crops I. Springer, Berlin, pp 367–384

    Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Annal Bot 95:229–235

    Article  CAS  Google Scholar 

  • Jovtchev G, Barow M, Meister A, Schubert I (2007) Impact of environmental and endogenous factors on endopolyploidization in angiosperms. Environ Exp Bot 60:404–411

    Article  CAS  Google Scholar 

  • Karim MM, Siddika A, Tonu NN, Hossain DM, Meah MB, Kawanabe T, Fujimoto R, Okazaki K (2014) Production of high yield short duration Brassica napus by interspecific hybridization between B. oleracea and B. rapa. Breeding Sci 63:495–502

    Article  Google Scholar 

  • Klíma M, Vyvadilová M, Kucera V (2004) Production and utilization of doubled haploids in Brassica oleracea vegetables. Hortic Sci (Prague) 31:119–123

    Google Scholar 

  • Krejcíková J, Sudová R, Lucanová M, Trávnícek P, Urfus T, Vít P, Weiss-Schneeweiss H, Kolano B, Oberlander K, Dreyer LL, Suda J (2013) High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Ann Bot 111:641–649

  • Kudo N, Kimura Y (2001) Flow cytometric evidence for endopolyploidy in seedlings of some Brassica species. Theor Appl Genet 102:104–110

    Article  CAS  Google Scholar 

  • Lu CM, Zhang B, Kakihara F, Kato M (2001) Introgression of genes into cultivated Brassica napus through resynthesis of B. napus via ovule culture and the accompanying change in fatty acid composition. Plant Breeding 120:405–410

    Article  CAS  Google Scholar 

  • Lysak MA, Dolezel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132

    Article  Google Scholar 

  • Malek MA, Ismail MR, Rafii MY, Rahman M (2012) Synthetic Brassica napus L.: development and studies on morphological characters, yield attributes, and yield. Sci World J [online]. doi:10.1100/2012/416901

  • Momotaz A, Kato M, Kakihara F (1998) Production of intergeneric hybrids between Brassica and Sinapis species by means of embryo rescue technique. Euphytica 103:123–130

    Article  Google Scholar 

  • Nakamura T, Kuwayama S, Tanaka S, Oomiya T, Saito H, Nakano M (2005) Production of intergeneric hybrid plants between Sandersonia aurantiaca and Gloriosa rothschildiana via ovule culture (Colchicaceae). Euphytica 142:283–289

    Article  Google Scholar 

  • Ozminkowski RH Jr, Jourdan P (1994) Comparing the resynthesis of Brassica napus L. by interspecific somatic and sexual hybridization. I. Producing and identifying hybrids. J Am Soc Hortic Sci 119:808–815

    Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Botanica 55:1–57

    Google Scholar 

  • Rahman MH (2004) Optimum age of siliques for rescue of hybrid embryos from crosses between Brassica oleracea, B. rapa and B. carinata. Can J Plant Sci 84:965–969

    Article  Google Scholar 

  • Rahman MH (2005) Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential. Plant Breeding 124:13–19

    Article  Google Scholar 

  • Rahman H (2013) Breeding spring canola (Brassica napus L.) by the use of exotic germplasm. Can J Plant Sci 93:363–373

    Article  CAS  Google Scholar 

  • Rahman MH, Bennett RA, Yang RC, Thiagarajah MR (2011) Exploitation of the late flowering species Brassica oleracea L. for the improvement of earliness in B. napus L. – an untraditional approach. Euphytica 177:365–374

    Article  Google Scholar 

  • Reed SM (2005) Embryo rescue. In: Trigiano RN, Gray DI (eds) Plant development and biotechnology. CRC Press, Boca Raton, FL, pp 235–239

    Google Scholar 

  • Schranz ME, Dobes C, Koch MA, Mitchell-Olds T (2005) Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810

    Article  CAS  PubMed  Google Scholar 

  • Seyis F (2013) Towards a Canola quality resynthesized rapeseed (B. napus L.) B. olaracea genotypes as a basic resource. Eur J Plant Sci Biotechnol 7(Special Issue 1):33–37

  • Seyis F, Snowdon RJ, Luhs W, Friedt W (2003) Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breeding 122:473–478

    Article  CAS  Google Scholar 

  • Sosnowska K, Cegielska-Taras T (2014) Application of in vitro pollination of opened ovaries to obtain Brassica oleracea L. x B.rapa L. hybrids. In Vitro Cell Dev-Pl 50:257–262

    Article  CAS  Google Scholar 

  • Sosnowska K, Szala L, Olejnik A, Cegielska-Taras T (2010) Wstepne badania nad resynteza rzepaku ozimego (Brassica napus L.)—preliminary study on resynthesis of winter oilseed rape (Brassica napus L.). Rośtliny oleiste—Oilseed Crops Tom XXXI 257–265

  • Springer B, Wojciechowski A (2006) Ocena efektywnosci kultur in vitro izolowanych zarodków i zalazków w otrzymywaniu mieszanców oddalonych w rodzaju Brassica—the efficiency of obtaining interspecific hybrids in Brassica genera with applying in vitro culture of isolated embryos and ovules. Rośtliny oleiste—Oilseed Crops Tom XXVII 187–196

  • Suda J, Kron P, Husband BC, Trávnícek P (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 103–130

  • Takahira J, Cousin A, Nelson MN, Cowling WA (2011) Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell Tiss Organ Cult 104:51–59

    Article  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Van Tuyl JM, De Jeu MJ (1997) Methods for overcoming interspecific crossing barriers. In: Shivanna KR, Sawhney VK (eds): Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 273–292

  • Wang YJ, Campbell C (1998) Interspecific hybridization in buckwheat among Fagopyrum esculentum, F. homotropicum, and F. tataricum. Proceedings of the 7th international symposium on buckwheat at Winnipeg, Canada, pp 1–13

  • Wang M, Zhao J, Peng Z, Guo W, Wang Y, Wang L, Xia G (2008) Chromosomes are eliminated in the symmetric fusion between Arabidopsis thaliana L. and Bupleurum scorzonerifolium Willd. Plant Cell Tiss Org 92:121–130

    Article  Google Scholar 

  • Wang J, Jiang JJ, Wang YP (2013) Protoplast fusion for crop improvement and breeding in China. Plant Cell Tiss Org 112:131–142

    Article  Google Scholar 

  • Wen J, Tu JX, Li ZY, Fu TD, Ma CZ, Shen JX (2008) Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica 162:81–89

    Article  Google Scholar 

  • Wojciechowski A (1985) Interspecific hybrids between Brassica campestris L. and B. oleracea L. I. Effectiveness of crossing, pollen tube growth, embryogenesis. Genet Pol 26:423–436

    Google Scholar 

  • Zhang GQ, Tang GX, Song WJ, Zhou WJ (2004) Resynthesizing Brassica napus from interspecific hybridization between Brassica rapa and B. oleracea through ovary culture. Euphytica 140:181–187

    Article  CAS  Google Scholar 

  • Zhang HZ, Shi CH, Wu JG (2011) Analysis of genetic effects for heterosis of erucic acid and glucosinolate contents in rapeseed (Brassica napus L.). Agric Sci China 10:1525–1531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Agriculture of the Czech Republic, Projects No 0002700604, RO0414; and by the Czech University of Life Sciences in Prague, Project No IGA FTA 20145022. We thank Petra Bartosová, Václava Stresková, and MSc. Vlasta Jarolímová for their assistance with plant material processing; René Miller and Peter Lemkin for critical reviewing of the manuscript and linguistic revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Hilgert-Delgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilgert-Delgado, A., Klíma, M., Viehmannová, I. et al. Efficient resynthesis of oilseed rape (Brassica napus L.) from crosses of winter types B. rapa × B. oleracea via simple ovule culture and early hybrid verification. Plant Cell Tiss Organ Cult 120, 191–201 (2015). https://doi.org/10.1007/s11240-014-0593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0593-2

Keywords

Navigation