Skip to main content
Log in

A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Transient gene expression assays using protoplasts have been frequently used in high-throughput screening and functional characterization of plant genes. In barley, however, very few studies have explored the use of protoplasts isolated from green tissues. In this study, a reliable and efficient transient gene expression system has been established using barley green tissue protoplasts. Due to the importance of osmolarity in maintaining protoplast viability and transfection efficiency, different mannitol concentrations were tested to determine the optimal osmolarity suitable for barley protoplast preparation. The method and conditions were also described for efficient isolation of protoplasts from barley leaf and stem tissues and transient expression of exogenous gene constructs. This transient expression system has been successfully demonstrated for protein immunoblot analysis, subcellular protein localization and quantitative analysis of gene expression. Furthermore, a simplified method has been described to quickly evaluate microRNAs for post-transcriptional regulation of their target genes in barley protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13. doi:10.1186/1746-4811-2-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196(1):149–161. doi:10.1111/j.1469-8137.2012.04248.x

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21(9):1082–1087. doi:10.1038/nbt853

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol Plant Pathol 7(5):417–427. doi:10.1111/j.1364-3703.2006.00346.x

    Article  PubMed  CAS  Google Scholar 

  • Colaiacovo M, Subacchi A, Bagnaresi P, Lamontanara A, Cattivelli L, Faccioli P (2010) A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.). BMC Genom 11:595. doi:10.1186/1471-2164-11-595

    Article  Google Scholar 

  • Faraco M, Di Sansebastiano GP, Spelt K, Koes RE, Quattrocchio FM (2011) One protoplast is not the other! Plant Physiol 156(2):474–478. doi:10.1104/pp.111.173708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer R, Hain R (1995) Tobacco protoplast transformation and use for functional analysis of newly isolated genes and gene constructs. Methods Cell Biol 50:401–410

    Article  PubMed  CAS  Google Scholar 

  • Garcia I, Rodgers M, Lenne C, Rolland A, Sailland A, Matringe M (1997) Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325(Pt 3):761–769

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia I, Rodgers M, Pepin R, Hsieh TF, Matringe M (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119(4):1507–1516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gudesblat GE, Schneider-Pizon J, Betti C, Mayerhofer J, Vanhoutte I, van Dongen W, Boeren S, Zhiponova M, de Vries S, Jonak C, Russinova E (2012) SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat Cell Biol 14(5):548–554. doi:10.1038/ncb2471

    Article  PubMed  CAS  Google Scholar 

  • Holm PB, Olsen O, Schnorf M, Brinch-Pedersen H, Knudsen S (2000) Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res 9(1):21–32

    Article  PubMed  CAS  Google Scholar 

  • Hooley R (1982) Protoplasts isolated from aleurone layers of wild oat (Avena fatua L.) exhibit the classic response to gibberellic acid. Planta 154(1):29–40. doi:10.1007/bf00385493

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154(2):611–621. doi:10.1104/pp.110.162271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li JF, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25(5):1507–1522. doi:10.1105/tpc.113.112235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133–146. doi:10.1111/j.1365-313X.2007.03218.x

    Article  PubMed  CAS  Google Scholar 

  • Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126(3):469–481

    PubMed  CAS  Google Scholar 

  • Macovei A, Tuteja N (2012) microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:183. doi:10.1186/1471-2229-12-183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martinoia Enrico, Heck Urs, Wiemken A (1981) Vacuoles as storage compartments for nitrate in barley leaves. Nature 289:292–294. doi:10.1038/289292a0

    Article  CAS  Google Scholar 

  • Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716. doi:10.1038/nature11543

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104(1):34–41. doi:10.1263/jbb.104.34

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439. doi:10.1126/science.1126088

    Article  PubMed  CAS  Google Scholar 

  • Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51(6):1126–1136. doi:10.1111/j.1365-313X.2007.03212.x

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (2013) Evolution of wild barley and barley improvement. In: Zhang G, Li C, Liu X (eds) Advance in barley sciences. Springer Netherlands, pp 1–23. doi:10.1007/978-94-007-4682-4_1

  • Okuno T, Furusawa I (1977) A simple method for the isolation of intact mesophyll protoplasts from cereal plants. Plant Cell Physiol 18(6):1357–1362

    Google Scholar 

  • Omirulleh S, Abraham M, Golovkin M, Stefanov I, Karabaev MK, Mustardy L, Morocz S, Dudits D (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol Biol 21(3):415–428

    Article  PubMed  CAS  Google Scholar 

  • Salmenkallio-Marttila M, Aspegren K, Akerman S, Kurtén U, Mannonen L, Ritala A, Teeri TH, Kauppinen V (1995) Transgenic barley (Hordeum vulgate L.) by electroporation of protoplasts. Plant Cell Rep 15:301–304. doi:10.1007/BF00193741

    PubMed  CAS  Google Scholar 

  • Schauer SE, Golden TA, Merchant DS, Patra BN, Lang JD, Ray S, Chakravarti B, Chakravarti DN, Ray A (2013) DCL1, a protein that produces plant microRNA, coordinates meristem activity. bioRxiv. http://biorxiv.org/content/early/2013/12/16/001438. doi:10.1101/001438

  • Schutze K, Harter K, Chaban C (2009) Bimolecular fluorescence complementation (BiFC) to study protein–protein interactions in living plant cells. Methods Mol Biol 479:189–202. doi:10.1007/978-1-59745-289-2_12

    Article  PubMed  Google Scholar 

  • Seguin A, Lalonde M (1988) Gene transfer by electroporation in Betulaceae protoplasts: Alnus incana. Plant Cell Rep 7(6):367–370. doi:10.1007/BF00269514

    PubMed  CAS  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521

    Article  PubMed  CAS  Google Scholar 

  • Stanca A, Tumino G, Pagani D, Rizza F, Alberici R, Lundqvist U, Morcia C, Tondelli A, Terzi V (2013) The “Italian” barley genetic mutant collection: conservation, development of new mutants and use. In: Zhang G, Li C, Liu X (eds) Advance in barley sciences. Springer Netherlands, pp 47–56. doi:10.1007/978-94-007-4682-4_4

  • Tan B, Xu M, Chen Y, Huang M (2013) Transient expression for functional gene analysis using Populus protoplasts. Plant Cell Tissue Organ Cult 114(1):11–18. doi:10.1007/s11240-013-0299-x

    Article  CAS  Google Scholar 

  • Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40(3):428–438. doi:10.1111/j.1365-313X.2004.02219.x

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104(1):37–48. doi:10.1104/pp.104.1.37

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wehner N, Hartmann L, Ehlert A, Bottner S, Onate-Sanchez L, Droge-Laser W (2011) High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. Plant J 68(3):560–569. doi:10.1111/j.1365-313X.2011.04704.x

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6(6):1975–1983. doi:10.1093/mp/sst119

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Jin H, Chen Y, Lin W, Wang C, Chen Z, Han N, Bian H, Zhu M, Wang J (2012) A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. New Phytol 193(1):81–95. doi:10.1111/j.1469-8137.2011.03867.x

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572. doi:10.1038/nprot.2007.199

    Article  PubMed  CAS  Google Scholar 

  • You Y, Shirako Y (2013) Evaluation of host resistance to barley yellow mosaic virus infection at the cellular and whole-plant levels. Plant Pathol 62(1):226–232. doi:10.1111/j.1365-3059.2012.02616.x

    Article  CAS  Google Scholar 

  • Zhang H, Li L (2013) SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. Plant J 74(1):98–109. doi:10.1111/tpj.12107

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):30. doi:10.1186/1746-4811-7-30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X (2010) Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol 5(1):67–90. doi:10.1007/s11515-010-0007-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 31171615, No. 31171543), China Agriculture Research System (CARS-05) and National Special Foundation for Transgenic Species of China (2014ZX08009-003-001; 2013ZX08009-003-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwu Bian.

Additional information

Yu Bai and Ning Han have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Han, N., Wu, J. et al. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tiss Organ Cult 119, 211–219 (2014). https://doi.org/10.1007/s11240-014-0527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0527-z

Keywords

Navigation