Skip to main content
Log in

Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

An Erratum to this article was published on 04 February 2015

Abstract

Somatic embryogenesis (SE) is a method for producing embryos in vitro and is considered a highly promising approach for micropropagation and germplasm conservation. However, the application of SE for genetic breeding and ex situ conservation of certain species, such as Brazilian pine, faces several technical challenges, including the difficulty of inducing embryogenic cultures using tissues of mature trees, the loss of embryogenic competence of cell cultures and incomplete development of somatic embryos. In order to understand the genetic factors governing embryogenesis, a comparative transcriptome analysis was performed to elucidate differences between distinct cell cultures, early zygotic and somatic embryos and, unorthodox seed developmental stages. A total of 64 GB of sequence derived from high-throughput Illumina RNA-seq profiling was used for de novo transcriptome assembly. The reference transcriptome resulted in 112,772 predicted unigenes with an average length of 825 bp and an N50 of 1,638 bp. Sequence similarity searches using a public protein database revealed 19,947 unigenes that could be annotated with gene descriptions and gene ontology terms. Analysis of differential gene expression allowed pinpointing of genes whose products are predicted to be involved in cell line embryogenic potential, early somatic embryo formation and unorthodox seed development. The results expand our understanding of the complex molecular events that control embryogenesis suggesting that the regeneration impairment of Araucaria angustifolia cultures is consequence of the auxin signaling failure. The generated data lay the foundation for future functional genomic and evolutionary studies that will advance the understanding of conifer biology and unorthodox seed physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM (2014) Non-model organisms, a species endangered by proteogenomics. J Proteomics. doi:10.1016/j.jprot.2014.01.007

    Google Scholar 

  • Becwar MR, Noland TL, Wyckoff JL (1989) Maturation, germination, and conversion of Norway spruce (Picea abies L.) somatic embryos to plant. In Vitro Cell Dev Biol Plant 26:575–580

    Article  Google Scholar 

  • Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJM (2009) De novo transcriptome assembly with ABySS. Bioinformatics 25:2872–2877

    Article  CAS  PubMed  Google Scholar 

  • Burleigh JG, Barbazuk WB, Davis JM, Morse AM, Soltis PS (2012) Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. J Bot. ID 292857

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Madden T, Ma N, Tao T, Agarwala R, Morgulis A (2013) BLAST command line applications user manual. National Center for Biotechnology Information (US). http://www.ncbi.nlm.nih.gov/books/NBK1763/. Accessed 09 Nov 2013

  • Canales J, Bautista R, Label P, Gómez MJ, Lesur I, Pozo NF, Rueda LM, Fernández D, Guerrero R, Vanessa C, Benzekri H, Cañas RA, Guevara MA, Andreia R (2013) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J 1:1–14

    Google Scholar 

  • Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509:7–15

    Article  PubMed  Google Scholar 

  • Christenhusz M, Zhang XC, Schneider H (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19:7–54

    Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • dos Santos ALW, Wiethölter N, El Gueddari NE, Moerschbacher BM (2006) Protein expression during seed development in Araucaria angustifolia: transient accumulation of class IV chitinases and arabinogalactan proteins. Physiol Plantarum 127:138–148

    Article  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  • Francis WR, Christianson LM, Kiko R, Powers ML, Shaner NC, Haddock SHD (2013) A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly. BMC Genom 14:167

    Article  CAS  Google Scholar 

  • Futamura N, Totok Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genom 9:383

    Article  Google Scholar 

  • Gentleman R, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  • Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE 8:e69261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hakman I, Hallberg H, Palovaara J (2009) The effect of the polar auxin transport inhibitor NPA on embryo morphology and expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29:483–496

    Article  CAS  PubMed  Google Scholar 

  • Hedman H, Zhu T, von Arnold S, Sohlberg JJ (2013) Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol 13:89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Union of Conservation of Nature Red List of Threatened Species (2013) http://www.iucnredlist.org/details/32975/0. Accessed 03 March 2013

  • Jin F, Hu L, Yuan D, Xu J, Gao W, He L, Yang X, Zhang X (2013) Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol J 2013:1–13

    Google Scholar 

  • Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jo L, dos Santos ALW, Bueno CA, Barbosa HR, Floh EIS (2014) Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol 34:94–104

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Lin Y (2013) Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using illumina paired-end sequencing. BMC Genom 14:561

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsson E, Sitbon F, Ljung K, von Arnold S (2008) Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 177:356–366

    CAS  PubMed  Google Scholar 

  • Larsson E, Sundström JF, Sitbon F, von Arnold S (2012) Expression of PaNACO1, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot Lond 110:923–934

    Article  CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Mackay J, Dean JFD, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MA, Fluch S (2012) Towards decoding the conifer giga-genome. Plant Mol Biol 80:555–569

    Article  CAS  PubMed  Google Scholar 

  • Merkle SA, Dean JFD (2000) Forest biotechnology. Curr Opin Biotech 11:298–302

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:480–484

    Article  Google Scholar 

  • Ralph SG, Chun HJ, Kolosova N, Cooper D, Oddy C, Ritland CE, Kirkpatrick R, Moore R, Barber S, Holt RA (2008) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genom 14:484

    Article  Google Scholar 

  • Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ (2011) A white spruce gene catalog for conifer genome analyses. Plant Physiol 157:14–28

    Article  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ (2011) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912

    Article  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Robinson MD, Smyth GK (2008) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9:321–332

    Article  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rutledge RG, Stewart D, Caron S, Overton C, Boyle B, Mackay J, Klimaszewska K (2013) Potential link between biotic defense activation and recalcitrance to induction of somatic embryogenesis in shoot primordial from adult trees of with spruce (Picea glauca). BMC Plant Biol 13:116

    Article  PubMed Central  PubMed  Google Scholar 

  • Sangwan RS, Tripathi S, Singh J, Narnoliya LK, Sangwan NS (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 525:58–76

    Article  CAS  PubMed  Google Scholar 

  • Schlögl PS, dos Santos ALW, do Nascimento VL, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell, Tissue Organ Cult 108:173–180

    Article  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genom 12:131

    Article  CAS  Google Scholar 

  • Stasolla C, Bozhkov PV, Chu TM, Zyl LV, Egertsdotter U, Suarez MF, Craig DC, Wolfinger RD, von Arnold S, Sederoff RR (2004) Variation in transcripts abundance during somatic embryogenesis in Gymnosperms. Tree Physiol 24:1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Steiner N, Santa-Catarina C, Andrade JBR, Balbuena TS, Guerra MP, Handro W, Floh EIS, Silveira V (2008) Araucaria angustifolia biotechnology. Funct Plant Sci Biotech 2:20–28

    Google Scholar 

  • Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of somatic embryogenesis receptor-like kinase-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell, Tissue Organ Cult 109:41–50

    Article  CAS  Google Scholar 

  • Ueche OG (2012) Pine transcriptomics—RNA-Seq data analysis of Scots pine (Pinus sylvestris) seedlings subjected to a wounding experiment. Dissertation, University of Helsinki

  • Van Verk MC, Hickman R, Pieterse CMJ, Van Wees S (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18:175–179

    Article  PubMed  Google Scholar 

  • Vega-Bartol JJ, Simões M, Lorenz WW, Rodrigues AS, Alba R, Dean JFD, Miguel CLM (2013) Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biol 13:123

    Article  PubMed Central  PubMed  Google Scholar 

  • Vestman D, Larsson E, Uddenberg D, Cairney J, Claphan D, Sundberg E, von Arnold S (2011) Important process during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genomes 7:347–362

    Article  Google Scholar 

  • Wang Y, Hua W, Wang J, Hannoufa A, Xu Z, Wang Z (2013) Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Mol Genet Genomics 288:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Li B, Xu Y, Ji D, Chen C (2013) Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genom 14:107

    Article  CAS  Google Scholar 

  • Xu H, Zhang W, Gao Y, Zhao Y, Guo L, Wang J (2012) Proteomic analysis of embryo development in rice (Oryza sativa). Planta 235:687–701

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang S, Han S, Li X, Qi L (2012) Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep 31:1637–1657

    Article  CAS  PubMed  Google Scholar 

  • Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12:2–12

    Article  Google Scholar 

  • Zheng W, Zhang X, Yang Z, Wu J, Li F, Duan L, Li F (2014) AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS ONE 9:e87502

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

P.E. was a recipient of a CAPES fellowship. B.L., S.C.S.A. and A.L.W.S. were recipients of FAPESP fellowships. M.R. and E.F. hold fellowships from CNPq. This work was partially supported by grants from FAPESP (Brazil), CNPq (Brazil), USP (Brazil) and Petrobras. The authors thank Roberta Alvares Campos for technical assistance during sample preparation, Horácio Montenegro and Marcelo Brandão for help and access to the Computer Cluster Thunder (Bioinformatics Group from the Laboratório de Biologia Molecular de Plantas, ESALQ, USP) and PlantScribe (www.plantscribe.com) for carefully editing this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eny Iochevet Segal Floh or Magdalena Rossi.

Additional information

Eny Iochevet Segal Floh and Magdalena Rossi have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbl, P., Lira, B.S., Andrade, S.C.S. et al. Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze. Plant Cell Tiss Organ Cult 120, 903–915 (2015). https://doi.org/10.1007/s11240-014-0523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0523-3

Keywords

Navigation