Skip to main content
Log in

Identifying novel salt-tolerant genes from Dunaliella salina using a Haematococcus pluvialis expression system

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Dunaliella salina (Dunal) Teod, a unicellular eukaryotic green alga, is a highly salt-tolerant organism. To identify novel genes with potential roles in salinity tolerance, a salt stress-induced D. salina cDNA library was screened based on the expression in Haematococcus pluvialis, an alga also from Volvocales but one that is hypersensitive to salt. Five novel salt-tolerant clones were obtained from the library. Among them, Ds-26-16 and Ds-A3-3 contained the same open reading frame (ORF) and encoded a 6.1 kDa protein. Transgenic tobacco overexpressing Ds-26-16 and Ds-A3-3 exhibited increased leaf area, stem height, root length, total chlorophyll, and glucose content, but decreased proline content, peroxidase activity, and ascorbate content, and enhanced transcript level of Na+/H+ antiporter salt overly sensitive 1 gene (NtSOS1) expression, compared to those in the control plants under salt condition, indicating that Ds-26-16 enhanced the salt tolerance of tobacco plants. The transcript of Ds-26-16 in D. salina was upregulated in response to salt stress. The expression of Ds-26-16 in Escherichia coli showed that the ORF contained the functional region and changed the protein(s) expression profile. A mass spectrometry assay suggested that the most abundant and smallest protein that changed is possibly a DNA-binding protein or Cold shock-like protein. Subcellular localization analysis revealed that Ds-26-16 was located in the nuclei of onion epidermal cells or nucleoid of E. coli cells. In addition, the possible use of shoots regenerated from leaf discs to quantify the salt tolerance of the transgene at the initial stage of tobacco transformation was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkayal F, Albion RL, Tillett RL, Hathwaik LT, Lemos MS, Cushman JC (2010) Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. Plant Sci 179:437–449

    Article  PubMed  CAS  Google Scholar 

  • Blaudez D, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant cell 15:2911–2928

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chatzissavvidis C, Veneti G, Papadakis I, Therios I (2008) Effect of NaCl and CaCl2 on the antioxidant mechanism of leaves and stems of the rootstock CAB-6P (Prunus cerasus L.) under in vitro conditions. Plant Cell Tiss Organ Cult 95:37–45

    Article  CAS  Google Scholar 

  • Chen H, Jiang J (2009) Osmotic responses of Dunaliella to the changes of salinity. J Cell Physiol 219:251–258

    Article  PubMed  CAS  Google Scholar 

  • Dame RT, Goosen N (2002) HU: promoting or counteracting DNA compaction? FEBS Lett 529:151–156

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Bocanegra AR, Guerrero Legarreta I, Martinez Jeronimo F, Tomasini Campocosio A (2004) Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour Technol 92:209–214

    Article  PubMed  CAS  Google Scholar 

  • Du J, Huang YP, Xi J, Cao MJ, Ni WS, Chen X, Zhu JK, Oliver DJ, Xiang CB (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J 56:653–664

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Gokhman I, Pick U, Zamir A (1996) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17718–17723

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Gokhman I, Pick U, Zamir A (1997) A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities. J Biol Chem 272:1565–1570

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Flowers SA, Greenway H (1986) Effects of sodium chloride on tobacco plants. Plant, Cell Environ 9:645–651

    Article  CAS  Google Scholar 

  • Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Jiang B, Wang Y, Liu G, Yang C (2012) Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast. Mol Biol Rep 39:4889–4897

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Gong WF, Lu LJ, Chen XW, Chen DF (2013) Effect of silencing lycB gene on the carotenoid synthesis in Haematococcus pluvialis. Hereditas (Beijing) 35:233–240 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Imamoglu E, Vardar Sukan F, Conk Dalay M (2007) Effect of different culture media and light intensities on growth of Haematococcus pluvialis. Int J Nat Eng Sci 1:05–09

    Google Scholar 

  • Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK (2012) The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco. Mar Biotechnol 14:782–792

    Article  PubMed  CAS  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell Environ 29:1220–1234

    Article  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocophero content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Katz A, Pick U (2001) Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella. Biochim Biophys Acta 1504:423–431

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy S, Verma S, Rahman MH, Kav NN (2011) Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol 75:107–127

  • Kumar R, Mustafiz A, Sahoo KK, Sharma V, Samanta S, Sopory SK, Pareek A, Singla-Pareek SL (2012) Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. Plant Mol Biol 79:555–568

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:1–14

    Article  Google Scholar 

  • Sadka A, Himmelhoch S, Zamir A (1991) A 150-kilodalton cell surface protein is induced by salt in the halotolerant green alga Dunaliella salina. Plant Physiol 95:822–831

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Song NH, Ahn YJ (2011) DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. N Biotechnol 28:698–704

    Article  PubMed  CAS  Google Scholar 

  • Stübs D, Fuchs TM, Schneider B, Bosserhoff A, Gross R (2005) Identification and regulation of cold-induciblefactors of Bordetell bronchiseptica. Microbiology 151:1895–1909

    Article  PubMed  CAS  Google Scholar 

  • Teng CY, Liang CW, Qin S, Zeng CK (2005) Study on sensitivities of Haematococcus pluvialis to ten selective reagents for genetic engineering. Oceanol Limnol Sin 36:302–306 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Timmins M, Thomas-Hall SR, Darling A, Zhang E, Hankamer B, Marx UC, Schenk PM (2009) Phylogenetic and molecular analysis of hydrogen-producing green algae. J Exp Bot 60:1691–1702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang H, Benham CJ (2008) Superhelical destabilization in regulatory regions of stress response genes. PLoS Comput Biol 4:62–76

    CAS  Google Scholar 

  • Wang H, Chen X, Xing X, Hao X, Chen D (2010) Transgenic tobacco plants expressing atzA exhibit resistance and strong ability to degrade atrazine. Plant Cell Rep 29:1391–1399

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Chen X, Hao X, Chen D (2011) High throughput screening atrazine chlorohydrolase mutants with enhanced activity through Haematococcus pluvialis expression system. Chin J Biotechnol 27:620–628 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Williams RM, Rimsky S (1997) Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol Lett 156:175–185

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yamada A, Tsutsumi K, Tanimoto S, Ozeki Y (2003) Plant RelA/SpoT homolog confers salt tolerance in Escherichia coli and Saccharomyces cerevisiae. Plant Cell Physiol 44:3–9

    Article  PubMed  CAS  Google Scholar 

  • Yang CW, Deng W, Tang N, Wang XM, Yan F, Lin DB, Li ZG (2013) Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco. Plant Cell Tiss Organ Cult 112:171–179

    Article  CAS  Google Scholar 

  • Yarra R, He SJ, Abbagani S, Ma B, Bulle B, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tiss Organ Cult 111:49–57

    Article  CAS  Google Scholar 

  • Yuan H, Meng X, Gao Q, Qu W, Xu T, Xu Z, Song R (2011) The characterization of two peroxiredoxin genes in Dunaliella viridis provides insights into antioxidative response to salt stress. Plant Cell Rep 30:1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Duan L, Li Z (2011) Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. Plant Sci 181:405–411

    Article  PubMed  CAS  Google Scholar 

  • Zhao LN, Gong WF, Chen XW, Chen DF (2013) Characterization of genes and enzymes in Dunaliella salina involved in glycerol metabolism in response to salt changes. Phycol Res 61:37–45

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Peter Dörmann at University of Bonn for critically reading this manuscript. This work was supported by the Key Program of the Natural Science Foundation of Tianjin (Grant No. 12YFJZJC01700), the grant of the National Natural Science Foundation of China (No. 31070717) and the 111 Project (No. B08011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-wen Chen or De-fu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Wf., Zhao, Ln., Hu, B. et al. Identifying novel salt-tolerant genes from Dunaliella salina using a Haematococcus pluvialis expression system. Plant Cell Tiss Organ Cult 117, 113–124 (2014). https://doi.org/10.1007/s11240-014-0425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0425-4

Keywords

Navigation