Skip to main content
Log in

Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Strong constitutive promoters, such as CaMV35S, are widely used for plant transformation, but undesirable phenotypic changes have been reported when used to drive biotic stress tolerance and/or for modifying lignin content. The promoter of the eucalyptus cinnamoyl CoA reductase (CCR), a key enzyme of the lignin biosynthetic pathway, was shown to be preferentially expressed in vascular tissues both in herbaceous and woody transgenic plants but not eucalyptus. In this work, we transformed Eucalyptus globulus with the EgCCR promoter governing both β-glucuronidase (GUS) and GFP activity patterns. No statistical differences were found between the survival rate and percentage of GUS positive shoots between eucalyptus transformed with either the constitutive CaMV35S or with the EgCCR promoter. The EgCCR transformed plantlets exhibited high GUS expression levels associated with the vascular tissues opening the possibility of targeting vascular-associated traits such as lignin content or vascular pathogen resistance in adult elite plants of eucalyptus while avoiding the undesirable pleiotropic effects caused by strong constitutive promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggarwal D, Kumar A, Reddy MS (2011) Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiol Plant 33:1603–1611

    Article  CAS  Google Scholar 

  • Alcântara GB, Bespalhok JC, Quoirin M (2011) Organogenesis and transient genetic transformation of the hybrid Eucalyptus grandis × Eucalyptus urophylla. Sci Agric 68:246–251

    Article  Google Scholar 

  • Cai M, Wei J, Xianghua L, Caiguo X, Shiping W (2007) A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotech J 5:664–674

    Article  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulières F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2001) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS 99:2404–2409

    Article  CAS  Google Scholar 

  • Dibax R, Deschamps C, Bespalhok F, Vieira LGE, Molinari HBC, De Campos MKF, Quoirin M (2010) Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. Biol Plant 54:6–12

    Article  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. ‘‘Thompson Seedless’’ via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Gago J, Grima-Pettenatti J, Gallego PP (2011) Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine (Vitis vinifera L. cv. Albariño) conferred by the EgCCR promoter of Eucalyptus gunnii. Plant Physiol Biochem 49:413–419

    Article  PubMed  CAS  Google Scholar 

  • Gallego PP, Rodríguez R, de la Torre F, Villar B (2002) Genetic transformation of Eucalyptus globulus. In: Spinel S, Barredo Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFA-AFA Press, Vitoria-Gasteiz, pp 163–170

    Google Scholar 

  • Gallego PP, Rodríguez R, de la Torre F, Villar B (2009) Procedimiento para transformar material vegetal procedente de árboles adultos. Spanish Patent Application Number: ES20040002854 20041126. Universidade de Vigo, Spain

  • Girijashankar V (2011) Genetic transformation of Eucalyptus. Physiol Mol Biol Plants 17:9–23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • González ER, de Andrade A, Bertolo AL, Coelho G, Tozelli R, Prado VA, Veneziano MT, Labate CA (2002) Production of transgenic Eucalyptus grandis × E. urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Funct Plant Biol 29:97–102

    Article  Google Scholar 

  • Grima-Pettenati J, Goffner D (1999) Lignin genetic engineering revisited. Plant Sci 145:51–65

    Article  CAS  Google Scholar 

  • Grima-Pettenati J, Feuillet C, Goffner D, Borderies G, Boudet AM (1993) Molecular cloning and expression of a Eucalyptus gunni cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol 21:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Hinchee M, Rottmann W, Mullinax L, Zhang CS, Chang SJ, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol Plant 45:619–629

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho CK, Chang SH, Tsay JY, Tsai CJ, Chiang VL, Chen ZZ (1998) Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep 17:675–680

    Article  CAS  Google Scholar 

  • Ibáñez MA, Martín C, Pérez C (2003) Alternative statistical analysis for micropropagation: a practical case of proliferation and rooting phases in Viburnum opulus. InVitro Cell Dev Biol Plant 39:429–436

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants; the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kawaoka A, Nanto K, Ishii K, Ebinuma H (2006) Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genet 55:269–277

    Google Scholar 

  • Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Van Doorsselare J, Boerjan W, Boudet AM, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation. Plant J 23:1–16

    Article  Google Scholar 

  • Lauvergeat V, Rech P, Jauneau A, Guez C, Coutos-Thevenot P, Grima-Pettenati J (2002) The vascular expression pattern directed by the Eucalyptus gunnii cinnamoyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species. Plant Mol Biol 50:497–509

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Lopes ALL, Oliveira Y, Costa JL, Mudry CS, Procopiuk M, Scheidt NG, Brondani EG (2011) Preliminary results for genetic transformation of shoot tip of Eucalyptus saligna Sm. via Agrobacterium tumefaciens. J Biotech Biodiver 2:1–6

  • Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N, Suzuki H, Shibata D, Shimada T (2012) Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep 31:225–235

    Article  PubMed  CAS  Google Scholar 

  • McRae S, Van Staden J (1999) Transgenic Eucalyptus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 44. Springer-Verlag, Berlín, pp 88–114

    Google Scholar 

  • Myburg A, Grattapaglia D, Tuskan G, Jenkins J, Schmutz J, Mizrachi E, Hefer C, Pappas G, Sterck L, Van De Peer Y, Hayes R, Rokhsar D (2011) The Eucalyptus grandis genome project: genome and transcriptome resources for comparative analysis of woody plant biology. BMC Proc 5(Suppl 7):I20

    Article  PubMed Central  Google Scholar 

  • Navarro M, Ayax C, Martínez Y, Laur J, El Kayal W, Marque C, Teulières C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotech J 9:50–63

    Article  CAS  Google Scholar 

  • Padilla MGI, Golis A, Gentile A, Damiano C, Scorza R (2006) Evaluation for transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tiss Org 84:309–314

    Article  CAS  Google Scholar 

  • Pérez-Piñeiro P, Gago J, Landín M, Gallego PP (2012) Agrobacterium-mediated transformation of wheat: general overview and new approaches to model and identify the key factors involved. In: Özden Çiftçi Y (ed) Transgenic plants “Advances and Limitations”. Intech, pp 1–26

  • Piquemal J, Lapierre C, Myton K, O′Connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    Article  CAS  Google Scholar 

  • Prakash MG, Gurumurthi K (2009) Genetic transformation and regeneration of transgenic plants from precultured cotyledons and hypocotyls explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. In vitro Cell Dev Biol-Plant 45:429–434

    Article  CAS  Google Scholar 

  • Silva ALL, Oliveira Y, Costa JL, Mudry CS, Procopiuk M, Scheidt NG, Brondani EG (2011) Preliminary results for genetic transformation of shoot tip of Eucalyptus saligna Sm. via Agrobacterium tumefaciens. J Biotech Biodivers 2:1–6

    Article  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobaterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Genet Genomic 220:245–250

    CAS  Google Scholar 

  • Villar B, Oller JJ, Teulieres C, Boudet AM, Gallego PP (1999) In planta transformation of adult clones of Eucalyptus globulus using an hypervirulent Agrobacterium tumefaciens strain. In: Espinel S, Barredo Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFA-AFA Press, Vitoria-Gasteiz, pp 373–385

    Google Scholar 

Download references

Acknowledgments

We wish to thank Mr. Pedro M. Pantín for excellent technical assistance, Dr. Mónica Goicoechea for her help with fluorometric assays, and Mr. Juan Oller (ENCE) for the kind gift of 0-05MN E. globulus clone. Also, we want to thank the research group of Dr. Juan Segura and Dr. Isabel Arrillaga for their kind help on genomic hybridization analysis. Financial support from the European Community (FEDER), Ministry of Science and Technology (contract No AGL-2003-05877-FOR) and Xunta de Galicia (PGIDIT-02-BTF-30102PR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pablo Gallego.

Additional information

Francisco de la Torre and Ruth Rodríguez have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2013_422_MOESM1_ESM.tiff

PCR amplification of nptII (a), uidA (b) and virD2 (c) genes. Lanes 1-10: transformed Eucalyptus globulus explants. Lane 11: no DNA added; lane 12: untransformed Eucalyptus globulus DNA; lane 13, DNA extracted from Agrobacterium containing p35S GUS int; lane 14, molecular weight marker (Promega® 1 kB ladder). PCR was carried out one month after transformation. Primers were designed according to Gago et al. (2011). UidA and nptII genes were employed as an indication of successful transformation, while virD2 was used for ruling out residual contamination by agrobacteria (TIFF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Torre, F., Rodríguez, R., Jorge, G. et al. Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell Tiss Organ Cult 117, 77–84 (2014). https://doi.org/10.1007/s11240-013-0422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0422-z

Keywords

Navigation