Skip to main content
Log in

Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Salt stress has attracted increasing attention due to its toxic ability to restrict plant growth, and the photorespiration pathway has been shown to develop improved plant tolerance to abiotic stress. In this study, an Arabidopsis photorespiratory pathway gene serine: glyoxylate aminotransferase (SGAT), named as AtAGT1, was successfully overexpressed in duckweed (Lemna minor) to investigate the salinity defense capability in three transgenic overexpressed (OE) lines. Increased SGAT activity and decreased endogenous serine levels in these transgenic plant lines under salt stress resulted in enhanced protection against root abscission, higher maximum quantum yield of photosystem II (Fv/Fm), increased defense from cell damage as a result of improved cell membrane integrity, a decrease of reactive oxygen species (ROS) accumulation, and a strengthened antioxidant system. The salt tolerance in these transgenic OE lines indicates that the improvement of photorespiration stimulated the antioxidant system to scavenge ROS. The change of serine level also suggests the role of serine during salt stress. This transgenic engineering in duckweed not only introduced salt tolerance to this aquatic plant but also reveals a significant role of photorespiration during salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abogadallah GM (2011) Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci 180:540–547

    Article  PubMed  CAS  Google Scholar 

  • Abraham G, Dhar DW (2010) Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma 240:69–74

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Azevedo-Neto A, Prisco JT, Filho JE, Lacerda CF, Silva JV, Costa PH, Filho EG (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16(1):1–38

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  • Chang IH, Cheng KT, Huang PC, Lin YY, Cheng LJ, Cheng TS (2012) Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. Acta Physiol Plant 34:1165–1176

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Chen ZY, Wu YJ, Di LJ, Wang GD, Shen YF (2012) The AtCCX1 transporter mediates salinity tolerance in both Arabidopsis and yeast. Plant Cell Tissue Organ Cult 109:91–99

    Article  CAS  Google Scholar 

  • Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Phys Mol Biol Plants 17(2):129–136

    Article  CAS  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As (III) and As (V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993

    Article  PubMed  CAS  Google Scholar 

  • Fan WJ, Zhang M, Zhang HX, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7(5):e37344

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol 29:1209–1215

    Article  CAS  Google Scholar 

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930

    Article  CAS  Google Scholar 

  • Hamilton CM (1997) A binary-BAC vector for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  PubMed  CAS  Google Scholar 

  • Havir EA, McHale NA (1988) A mutant of Nicotiana sylvestris lacking serine: glyoxylate aminotransferase. Plant Physiol 87:806–808

    Article  PubMed  CAS  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2•−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  CAS  Google Scholar 

  • Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  PubMed  CAS  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Landolt E (1986) The family of Lemnaceae—a monographic study, vol 1. Veroff. Geobot. Institute ETH, Stiftung Rubel, Zurich, pp 13–31

  • Liu D, Gong Q, Ma Y, Li P, Li J, Yang S, Yuan L, Yu Y, Pan D, Xu F, Wang NN (2010) cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61:1655–1669

    Article  PubMed  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire AL, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Org Cult 104:41–49

    Article  CAS  Google Scholar 

  • Maehly AC (1955) Plant peroxidase. Method Enzymol 2:801–813

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mtttler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Moreno JI, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Bermúdez MA, Segura J, Ros R (2010a) Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism. J Exp Bot 62(3):1229–1239

    Article  PubMed  Google Scholar 

  • Muñoz-Bertomeu J, Cascales-Minana B, Alaiz M, Segura J, Ros R (2010b) A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development. Plant Signal Behav 5:67–69

    Article  PubMed  Google Scholar 

  • Nielsen DL, Brock MA, Rees GN, Baldwin DS (2003) Effect of increasing salinity on freshwater ecosystem in Australia. Aust J Bot 51:655–665

    Article  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of Photosystem II by oxidative stress in cyanobacteria. Photosynth Res 84:1–7

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Foyer CH (1999) Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J Exp Bot 50:1157–1167

    CAS  Google Scholar 

  • Noctor G, Veljovic-Javanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration. Ann Bot 89:841–850

    Article  PubMed  CAS  Google Scholar 

  • Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66(8):1499–1503

    Article  PubMed  CAS  Google Scholar 

  • Saravanavel R, Ranganathan R, Anantharaman P (2011) Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. Recent Res Sci Technol 3(4):177–180

    CAS  Google Scholar 

  • Shang ZH, Yu YN, Guo W, Liu YH, Wang JD (1993) Sensitive determination of amino acids composition of pig plasmin by pre-column derivatization with 1-fluoro-2, 4-dinitrobenzene and high performance liquid chromatographic (HPLC) separation. Chin J Chromatogr 11:236–238

    CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Thapar R, Rai LC (2008) Salinity-induced physiological and proteomic changes in Anabaena doliolum. Environ Exp Bot 64:49–57

    Article  CAS  Google Scholar 

  • Srivastava AK, Alexova R, Jeon YJ, Kohli GS, Neilan BA (2011) Assessment of salinity-induced photorespiratory glycolate metabolism in Anabaena sp. PCC 7120. Microbiol 157:911–917

    Article  CAS  Google Scholar 

  • Sun J, Li LS, Liu MQ, Wang MJ, Ding MQ, Deng SR, Lu CF, Zhou XY, Shen X, Zheng XJ, Chen SL (2010) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tissue Organ Cult 103:205–215

    Article  CAS  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184

    Article  PubMed  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    Article  CAS  Google Scholar 

  • Wang Y, Kandeler R (1994) Promotion of flowering by a tumor promoter. J Plant Physiol 144:710–713

    Article  CAS  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Li W, Zhang WJ (2008) Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquat Toxicol 87:88–98

    Article  PubMed  CAS  Google Scholar 

  • Wang FF, Deng SR, Ding MQ, Sun J, Wang MJ, Zhu HP, Han YS, Shen ZD, Jing XS, Zhang F, Hu Y, Shen X, Chen SL (2012) Overexpression of a poplar two-pore K+ channel enhances salinity tolerance in tobacco cells. Plant Cell Tiss Org Cult. doi:10.1007/s11240-012-0207-9

    Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Bio Sci 355:1517–1529

    Article  CAS  Google Scholar 

  • Yang L, Han HJ, Zuo ZJ, Zhou KQ, Ren C, Zhu YR, Bai YL, Wang Y (2012) Enhanced plant regeneration in Lemna minor by amino acid. Pak J Bot (accepted)

  • Yazici I, Turkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Article  CAS  Google Scholar 

  • Zhao H, Appenroth K, Landesman L, Salmeán AA, Lam E (2012) Duckweed rising at Chengdu: summary of the 1st International Conference on Duckweed application and research. Plant Mol Biol 78:627–632

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2007) Plant salt stress. In: Encyclopedia of life sciences. Wiley, Chichester. http://www.els.net/

  • Zhu YR, Tao HL, Lü XY, Wang SF, Wang NN, Wang Y (2004) High level of endogenous l-serine initiates senescence in Spirodela polyrrhiza. Plant Sci 166:1159–1166. http://www.els.net/WileyCDA/

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 30870185 and No. 31270296) and partially by Tianjin Municipal Science and Technology Commision (No. 11ZCKFSF01200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Han, H., Liu, M. et al. Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tiss Organ Cult 113, 407–416 (2013). https://doi.org/10.1007/s11240-012-0280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0280-0

Keywords

Navigation