Skip to main content

Advertisement

Log in

GsVAMP72, a novel Glycine soja R-SNARE protein, is involved in regulating plant salt tolerance and ABA sensitivity

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Abiotic stress, especially high salinity, is a major threat to agricultural production. It has been well established that SNARE proteins sustain directed vesicle traffic to underpin plant growth and development, yet little is known about the role of SNARE protein in the capacity to withstand abiotic stress, especially in wild soybeans. Here we identified and characterized a GsCBRLK interacting protein, GsVAMP72, which is a putative vesicle-associated membrane protein in Glycine soja. GsVAMP72 protein has a longin domain at its N-terminus, belonging to R-SNARE family. Quantitative real-time (RT) PCR and beta-glucuronidase (GUS) activity assays revealed that the expression of GsVAMP72 was highly and rapidly induced by both high salt and ABA treatments. Overexpression of GsVAMP72 in Arabidopsis significantly reduced salt tolerance by modifying the ionic content and down-regulating expression of stress-responsive genes, including RD29A, COR47, KIN1, COR15A and RAB18. On the other hand, GsVAMP72 overexpression increased plant ABA sensitivity and altered the expression levels of ABA-responsive genes. Subcellular localization analysis showed that eGFP–GsVAMP72 fusion protein was observed on the plasma membrane-like and endosome-like structures but eGFP alone was distributing throughout the cytoplasm in Arabidopsis protoplasts and onion epidermal cells. GsVAMP72 promoter-controlled GUS activity was detected in both vegetative and reproductive organs, and was strongly induced by salt and ABA. In summary, we demonstrated that GsVAMP72 is a novel Glycine soja vesicle-associated membrane protein and is highly involved in regulating plant responses to salt and ABA stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ER:

Endoplasmic reticulum

FW:

Fresh weight

LD:

Longin domain

OX:

Overexpression

PM:

Plasma membrane

PP2C:

Protein phosphatase 2C

PVC:

Prevacuolar compartment

PYR1:

Pyrabactin Resistance 1

ROS:

Reactive oxygen species

SNARE:

Soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors

SNM:

SNARE motif

SnRK2:

SNF1-related kinase 2

TGN:

Trans-Golgi network

TMD:

Transmembrane domain

VAMP:

Vesicle-associated membrane proteins

WT:

Wild type

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Bassham D, Blatt M (2008) SNAREs: cogs and coordinators in signaling and development. Plant Physiol 147:1504–1515

    Article  PubMed  CAS  Google Scholar 

  • Bock JB, Matern HT, Peden AA, Scheller RH (2001) A genomic perspective on membrane compartment organization. Nature 409:839–841

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT (2005) Structure and function of SNARE and SNARE-interacting proteins. Quart Rev Biophys 38:1–47

    Article  CAS  Google Scholar 

  • Cao D, Hou WS, Liu W, Yao WW, Wu CX, Liu XB, Han TF (2011) Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tiss Organ Cult 107:541–552

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  PubMed  CAS  Google Scholar 

  • Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13(7):853–859

    Article  PubMed  CAS  Google Scholar 

  • Ebine K, Miyakawa N, Fujimoto M, Uemura T, Nakano A, Ueda T (2012) Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases 3(1):23–27

    Article  PubMed  Google Scholar 

  • Eisenach C, Chen ZH, Grefen C, Blatt MR (2012) The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J 69:241–251

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95:15781–15786

    Article  PubMed  CAS  Google Scholar 

  • Filippini F, Rossi V, Galli T, Budillon A, D’Urso M, D’Esposito M (2001) Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends Biochem Sci 26:407–409

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Xiong AS, Peng RH, Jin XF, Xu J, Zhu B, Chen JM, Yao QH (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss Organ Cult 100:255–262

    Article  CAS  Google Scholar 

  • Geelen D, Leyman B, Batoko H, Sansabastiano GP, Moore I, Blatt MR (2002) The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: evidence from competition with its cytosolic domain. Plant Cell 14:387–406

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez LC Jr, Weis WI, Scheller RH (2001) A novel snare N-terminal domain revealed by the crystal structure of Sec22b. J Biol Chem 276:24203–24211

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Chen ZH, Honsbein A, Donald N, Hills A, Blatt MR (2010) A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis. Plant Cell 22:3076–3092

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Honsbein A, Blatt MR (2011) Ion transport, membrane traffic and cellular volume control. Curr Opin Plant Biol 14:332–339

    Article  PubMed  CAS  Google Scholar 

  • Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT, Tasaka M, Hasezawa S, Nakano A, Hara-Nishimura I, Maeshima M, Fukaki H, Mimura T (2009) Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol 50:2023–2033

    Article  PubMed  CAS  Google Scholar 

  • Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:120–144

    Article  PubMed  CAS  Google Scholar 

  • Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, Paneque M, Chen ZH, Johansson I, Blatt MR (2009) A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21:2859–2877

    Article  PubMed  CAS  Google Scholar 

  • Huang WL, Lee CH, Chen YR (2012) Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tiss Organ Cult 108:257–263

    Article  CAS  Google Scholar 

  • Hussam HN, Bjarne GH, Morten HH, Jacob KJ, Barbara AH (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34:e122

    Article  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151

    PubMed  CAS  Google Scholar 

  • Ivanov S, Fedorova EE, Limpens E, Mita SD, Genre A, Bonfante P, Bisseling T (2012) Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci USA 109:8316–8321

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Ji W, Li Y, Li J, Dai CH, Wang X, Bai X, Cai H, Yang L, Zhu YM (2006) Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja. BMC Plant Biol 6:4

    Article  PubMed  Google Scholar 

  • Jou Y, Chiang CP, Jauh GY, Yen HE (2006) Functional characterization of ice plant SKD1, an AAA-type ATPase associated with the endoplasmic reticulum-golgi network, and its role in adaptation to salt stress. Plant Physiol 141:135–146

    Article  PubMed  CAS  Google Scholar 

  • Kalde M, Nuhse TS, Findlay K, Peck SC (2007) The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci USA 104:11850–11855

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Golani Y, Kaye Y, Levine A (2010) Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J Exp Bot 61:2615–2622

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant cell 9:759–771

    PubMed  CAS  Google Scholar 

  • Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540

    Article  PubMed  CAS  Google Scholar 

  • Leyman B, Geelen D, Blatt MR (2000) Localization and control of expression of Nt-Syr1, a tobacco SNARE protein. Plant J 24:369–381

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Li DM, Wang ZK, Meng FL, Li YG, Wu XX, Teng WL, Han YP, Li WB (2012) Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-012-0192-z

    Google Scholar 

  • Martinez-Arca S, Rudge R, Vacca M, Raposo G, Camonis J, Proux-Gillardeaux V, Daviet L, Formstecher E, Hamburger A, Filippini F, D’Esposito M, Galli T (2003) A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc Natl Acad Sci USA 100:9011–9016

    Article  PubMed  CAS  Google Scholar 

  • McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Sollner TH, Rothman JE (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153–159

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Hinz U, Uzé M, Sautter C, Zryd JP (1997) Biochemical complementation of the betalain biosynthetic pathway in Portulaca grandiflora by a fungal 3,4-dihydroxyphenylalanine dioxygenase. Planta 203:260–263

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Spitzer C (2008) Endosomal functions in plants. Traffic 9:1589–1598

    Article  PubMed  CAS  Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2012) Effects of NaCl and iso-osmotic PEG stress on growth, osmolytes accumulation and antioxidant defense in cultured sugarcane cells. Plant Cell Tiss Organ Cult 108:279–286

    Article  CAS  Google Scholar 

  • Pratelli R, Sutter JU, Blatt MR (2004) A new catch to the SNARE. Trends Plant Sci 9:187–195

    Article  PubMed  CAS  Google Scholar 

  • Qiao YK, Li GL, Gao SG, Bi YJ, You LN, Shi XF, Zhang Y (2001) Geographical distribution and salt tolerance of wild soybean (G Soja) in inshore regions in ChangLi Hebei province. J Hebei Vocat Tech Teach Coll 15(2):9–13

    Google Scholar 

  • Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Organ Cult 106:179–190

    Article  CAS  Google Scholar 

  • Robinson DG, Herranz M-C, Bubeck J, Pepperkok R, Ritzenthaler C (2007) Membrane dynamics in the early secretory pathway. Crit Rev Plant Sci 26:199–225

    Article  CAS  Google Scholar 

  • Rossi V, Banfield DK, Vacca M, Dietrich LE, Ungermann C, D’Esposito M, Galli T, Filippini F (2004a) Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci 29:682–688

    Article  PubMed  CAS  Google Scholar 

  • Rossi V, Picco R, Vacca M, D’Esposito M, D’Urso M, Galli T, Filippini F (2004b) VAMP subfamilies identified by specific R-SNARE motifs. Biol Cell 96:251–256

    PubMed  CAS  Google Scholar 

  • Sanderfoot A (2007) Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol 144:6–17

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV (2001) Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 13:659–666

    PubMed  CAS  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Marquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588

    Article  PubMed  CAS  Google Scholar 

  • Sokolovski S, Hills A, Gay R, Blatt MR (2008) Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. Mol Plant 1:347–358

    Article  PubMed  CAS  Google Scholar 

  • Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109

    Article  PubMed  CAS  Google Scholar 

  • Sutter JU, Campanoni P, Blatt MR, Paneque M (2006a) Setting SNAREs in a different wood. Traffic 7:627–638

    Article  PubMed  CAS  Google Scholar 

  • Sutter JU, Campanoni P, Tyrrell M, Blatt MR (2006b) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K channel at the plasma membrane. Plant Cell 18:935–954

    Article  PubMed  CAS  Google Scholar 

  • Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35

    Article  PubMed  CAS  Google Scholar 

  • Thammina C, He MY, Yu H, Chen YQ, Gai Y, Cao KS, Lu LT, Zhao DG, Wang YJ, McAvoy R, Ellis D, Li Y (2012) Continuous biosynthesis of abscisic acid (ABA) may be required for maintaining dormancy of isolated embryos and intact seeds of Euonymus alatus. Plant Cell Tiss Organ Cult 108:493–500

    Article  CAS  Google Scholar 

  • Tochio H, Tsui MM, Banfield DK, Zhang M (2001) An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293:698–702

    Article  PubMed  CAS  Google Scholar 

  • Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Périlleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3:2

    Article  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SANRE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Sato M, Takeyasu K (2005) The longin domain regulates subcellular targeting of VAMP7 in Arabidopsis thaliana. FEBS Lett 579:2842–2846

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Li ZG, Yan F, Khalil R, Ren ZX, Yang CW, Yang YW, Deng W (2012) ZmSKIP, a homologue of SKIP in maize, is involved in response to abiotic stress in tobacco. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-012-0224-8

    Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  • Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Ji W, Zhu YM, Gao P, Li Y, Cai H, Bai X, Guo DJ (2010) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61:2519–2533

    Article  PubMed  CAS  Google Scholar 

  • Yang CW, Deng W, Tang N, Wang XM, Yan F, Lin DB, Li ZG (2012) Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-012-0219-5

    Google Scholar 

  • Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8589–8594

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin JX (2011a) Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS ONE 6(10):e26129

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Rao XL, Shi HT, Li RJ, Lu YT (2011b) Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3confers salt tolerance in rice. Plant Cell Tiss Organ Cult 107:1–11

    Article  CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. CRC Crit Rev Plant Sci 16:253–277

    CAS  Google Scholar 

  • Zhu JH, Gong ZZ, Zhang CQ, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14:3009–3028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Pro. Masahiro Mii and Dr. Judy Selmer for the critical reading of the manuscript. This work was supported by the Heilongjiang Provincial Higher School Science and Technology Innovation Team Building Program (2011TD005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Ji, W., Ding, X. et al. GsVAMP72, a novel Glycine soja R-SNARE protein, is involved in regulating plant salt tolerance and ABA sensitivity. Plant Cell Tiss Organ Cult 113, 199–215 (2013). https://doi.org/10.1007/s11240-012-0260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0260-4

Keywords

Navigation