Skip to main content
Log in

Engineering production of antihypertensive peptides in plants

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To date, a number of antihypertensive peptides (AHPs) have been identified. Most of these are derived from proteins present in common edible consumables, including milk, egg, and plant foods. Consumption of these foods serves as means of AHP delivery and thus contributing favorable health benefits. It is hypothesized that food crops, either over-expressing AHP precursor proteins or producing particular peptides as heterologous components, may serve as viable vehicles for production and delivery of functional foods as alternative hypertension therapies. In recent years, genetic engineering efforts have been undertaken to add value to functional foods. Pioneering approaches have been pursued in several crop plants, such as rice and soybean. In this review, a summary of current tools used for discovery of new AHPs, as well as strategies and perspectives of capitalizing on these AHPs in genetic engineering efforts will be presented and discussed. The implications of these efforts on the development of functional foods for preventing and treating hypertension are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abubakar A, Saito T, Kitazawa H, Kawai Y, Itoh T (1998) Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J Dairy Sci 81:3131–3138

    Google Scholar 

  • Chen ZY, Peng C, Jiao R, Wong YM, Yang N, Huang Y (2009) Anti-hypertensive nutraceuticals and functional foods. J Agric Food Chem 57:4485–4499

    Article  PubMed  CAS  Google Scholar 

  • Chockalingam A, Campbell NR, Fodor JG (2006) Worldwide epidemic of hypertension. Can J Cardiol 22:553–555

    Article  PubMed  Google Scholar 

  • Cushman DW, Ondetti MA (1980) Inhibitors of angiotensin-converting enzyme for treatment of hypertension. Biochem Pharmacol 29:1871–1877

    Article  PubMed  CAS  Google Scholar 

  • De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger TH (2000) International union of pharmacology. XXIII. The angiotensin receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  • De Leo F, Panarese S, Gallerani R, Ceci LR (2009) Angiotensin Converting Enzyme (ACE) inhibitory peptides: production and implementation of functional food. Curr Phar Des 15:3622–3643

    Article  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  • Dziuba J, Minkiewicz P, Nalecz D, Iwaniak A (1999) Database of biologically active peptide sequences. Nahrung 43:190–195

    Article  PubMed  CAS  Google Scholar 

  • Erdmann K, Cheung BW, Schröder H (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 19:643–654

    Article  PubMed  CAS  Google Scholar 

  • Erdos EG, Skidgel RA (1997) Metabolism of bradykinin by peptidases in health and disease. In: Farmer SG (ed) The kinin system: handbook of immunopharmacology. Academic Press, London, pp 112–141

    Google Scholar 

  • Fida HM, Kumada Y, Terashima M, Katsuda T, Katoh S (2009) Tandem multimer expression of angiotensin I-converting enzyme inhibitory peptide in Escherichia coli. Biotechnol J 4:1345–1356

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald RJ, Meisel H (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr 84:S33–S37

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald RJ, Murray BA, Walsh DJ (2004) Hypotensive peptides from milk proteins. J Nutr 134:980S–988S

    PubMed  CAS  Google Scholar 

  • Fujita H, Yoshikawa M (1999) LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44:123–127

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Usui H, Kurahashi K, Yoshikawa M (1995) Isolation and characterization of ovokinin, a bradykinin B1 agonist peptide derived from ovalbumin. Peptides 16:785–790

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Yokoyama K, Yoshikawa M (2000) Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 65:564–569

    Google Scholar 

  • Gobbetti M, Smacchi E, Corsetti A, Bellucci M (1997) Inhibition of proteolytic enzymes from Pseudomonas fluorescens ATCC 948 and angiotensin I-converting enzyme by peptides from zein, hordein and gluten hydrolysates. J Food Protect 60:499–504

    CAS  Google Scholar 

  • Goossens A, Van Montagu M, Angenon G (1999) Co-introduction of an antisense gene for an endogenous seed storage protein can increase expression of a transgene in Arabidopsis thaliana seeds. FEBS Lett 456:160–164

    Article  PubMed  CAS  Google Scholar 

  • Guang C, Phillips RD (2009) Plant food-derived Angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem 57:5113–5120

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Bark SJ, Lu WD, Taupenot L, O’Connor DT, Pevzner P, Hook V (2010) Mass spectrometry-based neuropeptidomics of secretory vesicles from human adrenal medullary pheochromocytoma reveals novel peptide products of prohormone processing. J Proteome Res 9:5065–5075

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto H, Sugiyama Y, Nakagawa N, Hashida E, Matsunaga Y, Takemoto S, Watanabe Y, Okada Y (1993) A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Biotechnology (NY) 11:930–932

    Article  CAS  Google Scholar 

  • Hansch C, Leo A (1995) Exploring QSAR fundamentals and applications in chemistry and biology. American Chemical Society, Washington

    Google Scholar 

  • Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y, Takano T (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr 64:767–771

    PubMed  CAS  Google Scholar 

  • Israili ZH, Hernández-Hernández R, Velasco M (2007) The future of antihypertensive treatment. Am J Ther 14:121–134

    Article  PubMed  Google Scholar 

  • Jauhiainen T, Vapaatalo H, Poussa T, Kyronpalo S, Rasmussen M, Korpela R (2005) Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am J Hypertens 18:1600–1605

    Article  PubMed  Google Scholar 

  • Jeong DW, Shin DS, Ahn CW, Song IS, Lee HJ (2007) Expression of antihypertensive peptide, His–His-Leu, as tandem repeats in Escherichia coli. J Microbiol Biotechnol 17:952–959

    PubMed  CAS  Google Scholar 

  • Kanauchi O, Igarashi K, Ogata R, Mitsuyama K, Andoh A (2005) A yeast extract high in bioactive peptides has a blood-pressure lowering effect in hypertensive model. Curr Med Chem 12:3085–3090

    Article  PubMed  CAS  Google Scholar 

  • Karaki H, Doi K, Sugano S, Uchiwa H, Sugai R, Murakami U, Takemoto S (1990) Antihypertensive effect of tryptic hydrolysate of milk casein in spontaneously hypertensive rats. Comp Biochem Physiol C 96:367–371

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Seki E, Osajima K, Yoshida M, Asada K, Matsui T, Osajima Y (2000) Antihypertensive effect of valyl tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. J Hum Hypertens 14:519–523

    Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323

    Article  PubMed  CAS  Google Scholar 

  • Kodera T, Nio N (2006) Identification of an Angiotensin I-converting enzyme inhibitory peptides from protein hydrolysates by a soybean protease and the antihypertensive effects of hydrolysates in spontaneously hypertensive model rats. J Food Sci 71:C164–C173

    Google Scholar 

  • Lau OS, Sun SS (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SB, Bannon GA (2005) Risks of allergic reactions to biotech proteins in foods: perception and reality. Allergy 60:559–564

    Article  PubMed  CAS  Google Scholar 

  • Luna-Suárez S, Medina-Godoy S, Cruz-Hernández A, Paredes-López O (2010) Modification of the amaranth 11S globulin storage protein to produce an inhibitory peptide of the angiotensin I converting enzyme, and its expression in Escherichia coli. J Biotechnol 148:240–247

    Article  PubMed  Google Scholar 

  • Maeno M, Yamamoto N, Takano T (1996) Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J Dairy Sci 79:1316–1321

    Article  PubMed  CAS  Google Scholar 

  • Maes W, Van Camp J, Vermeirssen V, Hemeryck M, Ketelslegers JM, Schrezenmeir J, Van Oostveldt P, Huyghebaert A (2004) Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells. Regul Pept 118:105–109

    Article  PubMed  CAS  Google Scholar 

  • Majumder K, Wu J (2010) A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res Intl 43:1371–1378

    Article  CAS  Google Scholar 

  • Masuda O, Nakamura Y, Takano T (1996) Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr 126:3063–3068

    PubMed  CAS  Google Scholar 

  • Matoba N, Doyama N, Yamada Y, Maruyama N, Utsumi S, Yoshikawa M (2001) Design and production of genetically modified soybean protein with anti-hypertensive activity by incorporating potent analogue of ovokinin(2–7). FEBS Lett 18:50–54

    Article  Google Scholar 

  • Matsufuji H, Matsui T, Ohshige S, Kawasaki T, Osajima K, Osajima Y (1995) Antihypertensive effects of angiotensin fragments in SHR. Biosci Biotechnol Biochem 59:1398–1401

    Google Scholar 

  • Matsui T, Li CH, Osajima Y (1999) Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. J Pept Sci 5:289–297

    Article  PubMed  CAS  Google Scholar 

  • Megias C, Del Mar Yust M, Pedroche J, Lquari H, Giron-Calle J, Alaiz M, Millan F, Vioque J (2004) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52:1928–1932

    Article  PubMed  CAS  Google Scholar 

  • Miguel M, López-Fandiño R, Ramos M, Aleixandre A (2005) Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats. Brit J Nutr 94:731–737

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi S, Kaneko T, Ishikawa H, Tanaka H, Maruyama S (1995) Production of bioactive peptides from corn endosperm proteins by some proteases. Ann N Y Acad Sci 750:429431

    Article  Google Scholar 

  • Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47:171–182

    Article  PubMed  Google Scholar 

  • Motoi H, Kodama T (2004) Isolation and characterization of angiotensin I converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Nahrung 47:354–358

    Google Scholar 

  • Mullally MM, Meisel H, FitzGerald RJ (1997) Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin. FEBS Lett 402:99–101

    Article  PubMed  CAS  Google Scholar 

  • Müntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99

    Article  PubMed  Google Scholar 

  • Murakami M, Tonouchi H, Takahashi R, Kitazawa H, Kawai Y, Negishi H, Saito T (2004) Structural analysis of a new anti-hypertensive peptide (beta-lactosin B) isolated from a commercial whey product. J Dairy Sci 87:1967–1974

    Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai K, Takano T (1995) Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci 78:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    Article  PubMed  CAS  Google Scholar 

  • Nakashima Y, Arihara K, Sasaki A, Mio H, Ishikawa S, Itoh M (2002) Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J Food Sci 67:434–437

    Google Scholar 

  • Nishizawa K, Kita A, Doi C, Yamada Y, Ohinata K, Yoshikawa M, Ishimoto M (2008) Accumulation of the bioactive peptides, novokinin, LPYPR and rubiscolin, in seeds of genetically modified soybean. Biosci Biotechnol Biochem 72:3301–3305

    Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  PubMed  CAS  Google Scholar 

  • Okitsu M, Morita A, Kakitani M, Okada M, Yokogoshi H (1995) Inhibition of the endothelin-converting enzyme by pepsin digests of food proteins. Biosci Biotechnol Biochem 59:325–326

    Article  PubMed  CAS  Google Scholar 

  • Oshima G, Shimabukuro H, Nagasawa K (1979) Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Acta 566:128–137

    Article  PubMed  CAS  Google Scholar 

  • Park CJ, Lee JH, Hong SS, Lee HS, Kim SC (1998) High-level expression of the angiotensin-converting-enzyme-inhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl Microbiol Biotechnol 50:71–76

    Article  PubMed  CAS  Google Scholar 

  • Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57:313–370

    PubMed  CAS  Google Scholar 

  • Pihlanto-Leppälä A, Koskinen P, Piilola K, Tupasela T, Korhonen H (2000) Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res 67:53–64

    Article  PubMed  Google Scholar 

  • Pripp AH, Isaksson T, Stepaniak L, Sørhaug T (2004) Quantitative structure-activity relationship modelling of ACE nhibitory peptides derived from milk proteins. Eur Food Res Technol 219:579–583

    Article  CAS  Google Scholar 

  • Pripp AH, Isaksson T, Stepaniak L, Sørhaug T, Ardo Y (2005) Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends Food Sci Technol 16:484–494

    Article  CAS  Google Scholar 

  • Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol 138:1746–1762

    Article  PubMed  CAS  Google Scholar 

  • Saito T (2008) Antihypertensive peptides derived from bovine casein and whey proteins. Adv Exp Med Biol 606:295–317

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Takahashi N, Satoh M, Yamasaki M, Minamino N (2010) A peptidomics strategy for discovering endogenous bioactive peptides. J Proteome Res 9:5047–5052

    Article  PubMed  CAS  Google Scholar 

  • Seppo L, Jauhiainen T, Poussa T, Korpela R (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr 77:326–330

    PubMed  CAS  Google Scholar 

  • Stoger E, Ma JK, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  PubMed  CAS  Google Scholar 

  • Suetsuna K (1998) Isolation and characterization of angiotensin I converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic). J Nutr Biochem 9:415–419

    Article  CAS  Google Scholar 

  • Tada Y, Utsumi S, Takaiwa F (2003) Foreign gene products can be enhanced by introduction into low storage protein mutants. Plant Biotechnol J 1:411–422

    Article  PubMed  CAS  Google Scholar 

  • Tinoco AD, Saghatelian A (2011) Investigating endogenous peptides and peptidases using peptidomics. Biochemistry 50:7447–7461

    Article  PubMed  CAS  Google Scholar 

  • Vercruysse L, Van Camp J, Smagghe G (2005) ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: a review. J Agric Food Chem 53:8106–8115

    Article  PubMed  CAS  Google Scholar 

  • Wakasa Y, Zhao H, Hirose S, Yamauchi D, Yamada Y, Yang L, Ohinata K, Yoshikawa M, Takaiwa F (2011) Antihypertensive activity of transgenic rice seed containing an 18-repeat novokinin peptide localized in the nucleolus of endosperm cells. Plant Biotechnol J 9:729–735

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2004) Regional consultation on hypertension prevention and control

  • World Health Organization Regional Office for the Eastern Mediterranean (2006) Guidelines for the management of hypertension in patients with diabetes mellitus

  • Wu J, Aluko RE, Nakai S (2006) Structural requirements of Angiotensin I-converting enzyme inhibitory peptides: quantitative structure activity relationship study of di- and tripeptides. J Agric Food Chem 54:732–738

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Matoba N, Usui H, Onishi K, Yoshikawa M (2002) Design of a highly potent anti-hypertensive peptide based on ovokinin(2–7). Biosci Biotechnol Biochem 66:1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N (1997) Antihypertensive peptides derived from food proteins. Inc Biopoly 43:129–134

    Article  CAS  Google Scholar 

  • Yamamoto N, Akino A, Takano T (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J Dairy Sci 77:917–922

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Nishizawa K, Yokoo M, Zhao H, Onishi K, Teraishi M, Utsumi S, Ishimoto M, Yoshikawa M (2008) Anti-hypertensive activity of genetically modified soybean seeds accumulating novokinin. Peptides 29:331–337

    Google Scholar 

  • Yang L, Tada Y, Yamamoto MP, Zhao H, Yoshikawa M, Takaiwa F (2006) A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580:3315–3320

    Article  PubMed  CAS  Google Scholar 

  • Yang LJ, Wakasa Y, Takaiwa F (2008) Biopharming to increase bioactive peptides in rice seed. J AOAC Int 91:957–964

    PubMed  CAS  Google Scholar 

  • Yano S, Suzuki K, Funatsu G (1996) Isolation from alpha-zein of thermolysin peptides with angiotensin I-converting enzyme inhibitory activity. Biosci Biotechnol Biochem 60:661–663

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, Tsuruki H, Takahata K (2000) Bioactive peptides derived from food proteins preventing lifestyle-related diseases. BioFactors 12:143–146

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hao GF, Tan Y, Xi Z, Huang MZ, Yang GF (2009) Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations. Bioorg Med Chem 17:4935–4942

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Current investigations from the group are supported by CONACYT/México (grants CB-102109, 131777, CIBIOGEM-173858) and PROMEP/SEP/México (grant CA 213 Bioprocesos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rosales-Mendoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosales-Mendoza, S., Paz-Maldonado, L.M.T., Govea-Alonso, D.O. et al. Engineering production of antihypertensive peptides in plants. Plant Cell Tiss Organ Cult 112, 159–169 (2013). https://doi.org/10.1007/s11240-012-0231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0231-9

Keywords

Navigation